

What I'll cover

- ▶ I. Overview of BGA and surface mount
- 2. PCB design
- 3.Assembly / Rework

Package size evolution

No reason to be scared of BGA

- Much easier to assemble
- More compact
- Can use newer parts
- ▶ BUT, rework more difficult

What is BGA

- Popular package for CPUs, memory, SoCs, interface chips
- High pin count, small space
- Can be difficult to "break out"
- Necessary for modern fast digital
- Quick, cheap 4layer services mean small BGAs are perfectly usable for prototyping

Variants of BGA packages

Variants of BGA packages

Lidless flip chip

Variants of BGA packages

Cutaway diagrams © Amkor

Footprint measurements

- Pitch
- Land size (usually function of pitch)
- Pattern (any voids)
- Total ball count

- Most packages have grid-aligned balls
- Horiz/vertical pitch may not be square

Typical metrics

- ▶ 0.5mm (Low ball count, PoP)
- ▶ 0.8mm (SoC, DDR)
- ▶ I.0mm (Large FPGAs)
- ▶ I.27mm (Legacy devices)
- ▶ Total balls can range from 4 to over 1000-2000
- Leaded balls, leadfree (RoHS)
- Larger pitches much easier to break out

PCB layout for BGA

- Can be done in just about any package
- I've used Eagle, Altium, others used Kicad
- Hand routing essential for layer count
- Footprints easy, symbols not
- Typical high speed layout rules apply

PCB specs required

- 4 layers is the sane minimum for most
- 256 balls possible on 4 layer
- 324 requires 6 layers
- ▶ 484 requires 8 layers
- For example a high end Stratix FPGA with ~1400 may take 16 layers
- ▶ ENIG, Immersion Silver
- PTH vs microvias

Layout process

- Fanout all pads except 2 outer rings
- Next two rings via'd to bottom layer
- Ground, power fills
- Land diameter: 2/3 of ball diameter
 - Example: 1.0mm bga0.8mm balls0.48mm land size
- ▶ 1.0mm:
 - 13mil drill, 21mil diameter, 6mil trace/space
- ▶ 0.8mm:
 - 10mil drill, 18mil diameter, 5mil trace/space

Outer two rings Inner area Ball land

Ball land styles

NSMD (Non-solder mask defined)

Most common, NSMD Solder Joint allows solder to "grab" around copper

- SMD (Soldermask defined)
 - Used when not enough space

Mentor Graphics

R4

Pads over vias?

- DON'T!
- Result: via steals solder, stressing joint, outgassing causes voids
- Real via-in-pad (VIP):
 - Plugged vias
 - Capped vias
- Aids bypass caps, costs \$\$\$

PCB Inspection

- ▶ I. Soldermask-copper alignment
- 2. Ensure annular ring on all vias
- 3. Pad coplanarity
- ▶ 4. Plating

Assembly Overview

- Apply paste
- Place parts
- Reflow

- Process is critical!!
- BGAs come preballed (leadfree)
- Either paste, or just flux the pcb
- Placement of BGA is super simple and easy
- Alignment: Copper best

Sitting on paste (recommended)

Sitting on flux (A+ planarity needed)

Alignment less critical

Solder paste

- Buy quality; cheap paste sucks
- BGAs come with leadfree balls
- Good for 6mos
- Store in fridge, don't freeze
- ▶ I use SMD291SNL10-ND

Stencils

- Kapton (3,5mil)
- Stainless steel

Oshstencils.com
Ohararp.com

Reflow

- Heating paste past melting temp consistently and holding for a bit
- Exact timing/temps important for big runs
- "Good enough" works for prototypes
- Convection oven > skillet > hotair station

Reflow

- Hotair station only works for very small (<200 pin) monolithic BGA and QFNs
- Hotplate gives uneven heating, only I side
- Convection oven best bet

Reflow profiles

- Consult datasheets of the critical parts on PCB such as as main processor, large connector etc
- Basically all the same depending
- Leadfree and leaded are different of course
- Always do dry run with a dummy pcb of same thermal mass

Figure 1. IR/Convection Reflow Profile (IPC/JEDEC J-STD-020D.1)

MSL: Moisture Sensitivity Level

001aac844

NXP Semiconductor

Reflow profiles

- Preheat ramp speed
- Soak time (deprecated for RoHS)
- Time above liquidus
- Cooldown speed (degrees/second)

For protos, exact rates not critical!

Failures

- Too long in soak will burn off flux
- Excessive voiding in solder balls
- Poor coplanarity of pads; bad wetting
- Other failures can manifest in the field:
 - Stress fractures caused by voids near joint
 - Dendritic growth/tin whisker
 - PCB failures such as via>plane shorts
 - Thermal cycling stress
 - Vibration/shock

Rework

- Most BGAs only rated to withstand 3 cycles
- Preheating is necessary
- Hard to heat joints by blasting the top of the package

R&R

- Remove BGA
- Site PCB prep
 - Clean pcb lands, must be flat
 - 99% isopropyl
- Prep BGA
 - Remove all solder
 - Isopropyl
 - Chip away flux residue again
 - Flux and place balls
 - Reflow in oven only

Further reading

- Altera reflow guidelines http://www.altera.com/literature/an/an353.pdf
- Intel process guidelines

 http://www.intel.de/content/dam/www/public/us/en/documents/packaging-databooks/packaging-chapter-09-databook.pdf
- NXP reflow appnote
 http://www.nxp.com/documents/application_note/ANI0365.pdf
- Breakout out very large devices
 http://www.pa.msu.edu/hep/atlas/II calo/reference/other/mentor/mentorpaper_bga_breakouts_and_routing_52590.pdf

Questions

Thanks

- marshallgs at gmail.com
- Twitter @fpga_nugga
- ▶ IRC efnet, freenode <marshallh>