
ACSLogo
User Guide

Version 1.5

2

Contents
Getting Started 5

ACSLogo Requirements 5
Downloading the Program 5
Tutorials 6

First Steps 7
Starting the Program 7
The Main Window 7
The Graphics Window 7
Commands 8
Help for Commands 10
Other Commands 10
Command Output 11
Arithmetic Expressions 11
Minus Signs 11

The Turtle 13
The Canvas 13

The Turtleʼs Position 14
The Turtleʼs Heading 15

Commands affecting Heading 16
Visibility 16

The Pen 17
Up or Down? 17
Pen Colour 17
Pen Width 17

Datatypes and Variables 19
Numbers 19

Operations on Numbers 19
Relational operators 20
Mathematical Functions 20

Words 22
Operations on Words 22

Lists 25
Operations on Lists 25

Variables 27
Flow Control 29

Repeating Commands 29
Run 31
Making Decisions 31
Thatʼs It? 31
Some More Examples 31

3

Procedures 33
The Procedures Window 33
Parameters 35
Comments 36
Local Variables 36
Outputting Results 36
Recursion 36
While and For 37
Thing 38
Importing Procedures 39

Graphics 40
Colours 40

Transparency and Opacity 41
Drawing Arcs 42
Text 43
Filling Shapes 43
Shadows 45
Images 46

Paths 47
FillCurrentPath 47
StrokeCurrentPath 48
Saving Paths 48
Text 48

Holes 50
Vector Graphics 55

Exporting Vector Graphics 55
Clipping Paths 57

Files 59
File Management Commands 59
File Manipulation Commands 63

Movies 65
Animation in ACSLogo 65
An Example 65

Speech & Music 67
Speech 67
Music 67

Appendix A: Menus 69
The ACSLogo Menu 69
The File Menu 69
The Export Submenu 70
The Edit menu 71
The Special menu 71
The Window Menu 72

4

The Help Menu 73
Appendix B: Preferences 75

The Turtle Tab 75
The Editing Tab 78
The Localisation Tab 79

Appendix C: Roll Your Own Turtle 80
Appendix D: Localisation 84

Prerequisites 84
The Application Bundle 85

Localisation Tasks 86
GUI Localisation 86

The .nib File 86
Localizable.strings 89

Logo Command Localisation 89
Command Table 92
Help and Tutorial Localisation 96

Tutorials 96
Help 96

Appendix E: Applescript 98
Applescript in General 98
Applescript and ACSLogo 98
Running Scripts 99

Local Applescript 99
Terminal 99
Remote Applescript 100

5

Getting Started
ACSLogo Requirements

ACSLogo runs on Mac OSX. The current version (1.5) runs on Leopard (OSX 10.5) and above.
At the time of writing, ʻaboveʼ is Snow Leopard (OSX 10.6), but it should run OK on the next few
versions.

There are older versions of ACSLogo on the website which will work with earlier versions of
the Mac OS.

Downloading the Program
Go to www.alancsmith.co.uk/logo and download from the link on the right-hand-side. This

downloads a disk image file with the suffix .dmg .The Operating System should mount this
automatically, but if not, find the file in your downloads folder and double-click it to mount it.

Once itʼs mounted, drag the enclosed folder to your Applications folder, or anywhere else you
want to put it:

In the ACSLogo folder, youʼll find:
ACSLogo.app The ACSLogo program.
examples.acsl A file of examples, to show what ACSLogo can do.
Readme.rtf Some miscellaneous notes about the program.
ReleaseNotes.rtf Whatʼs new in this version.
tutorials A directory of tutorials.
Website.webloc Double-click on this to go the website.

(You may not see the file extensions — it depends on your finder settings).

6

Double-click on the program to start it up. When the program starts, youʼll see two windows - a
main window called Untitled, and another window called Untitled - Graphics:

The main window is where youʼll type in logo commands. Any drawing done by the turtle
shows up in the Graphics window.

Youʼll probably want to expand the Graphics window to its full size by hitting the green button
on its title bar.

Tutorials
Click on the Help Menu, and at the bottom youʼll see a list of tutorials from the tutorials folder:

Each of these will open an interactive tutorial about a specific subject. We will cover the same
ground in this book, so choose which suits you best.

7

Starting the Program
Start the program by double-clicking on ACSLogo.app (the .app suffix may not be displayed

depending on your system settings).
When the program opens, you will see two windows – a main window called ʻUntitledʼ, and a

graphics window called ʻUntitled - Graphicsʼ.

First Steps

The Main Window
This is where you type things in — its main purpose is to type in commands to make the Turtle

do some drawing, but you can type in anything you want in the window, change fonts, paste
pictures, etc. It's a simple word processor like TextEdit. This is also the place where the program
writes out any results or error messages.

The Graphics Window
This is where the Turtle lives, and where it does its drawing. The area that the Turtle draws on

is called the Canvas.
Weʼll look at some other windows later.
If you can, maximise the Graphics window and position the windows so you can type into the

Main window and see whatʼs happening in the Graphics window.

8

Commands
In the main window, type this in on a line on its own:

Then, with the cursor still on that line, choose Execute from the Special menu.

You should see the Turtle move
forward in the Graphics Window,
drawing a line as it goes. The turtle has
moved forward 100 pixels.

In the Main window, press the Return key to go onto the next line, then type this in:

Weʼre going to execute this command, but rather than do it from the menu, hold down the
Command key (on the left of the space bar) and press return (you're going to have to execute a lot
of commands, and doing it from the keyboard is a lot quicker than going back to the menu each
time).

The turtle turns clockwise through
90 degrees.

Now move up to the previous line (the one with Forward 100) and press Command-return
again.

Forward 100

Right 90

9

Itʼs obvious from this that when we say Forward, where the line is drawn is dependent both on
the position of the Turtle and the direction it is facing.

Try using Forward and Right with different amounts, then try Left (which does as you would
expect).

If you misspell a command, Logo will complain:

You can press Command-Z (Undo) to get rid of the error message, then go back to correct the
command and execute it again. The commands weʼve looked at so far all take one parameter,
which is the amount by which to move or turn. If you leave that out, Logo will complain:

Different Logo commands take different number of parameters – one, two, three, or none.
One command that takes none is ClearScreen. Execute it now and you will see that it clears

the screen and sets the Turtle back to the middle of the canvas, pointing straight up.
Commands are case-insensitive — you can type ClearScreen, clearscreen, or

clearSCREEN, and they will all do the same thing.
So far, youʼve typed in the commands individually on separate lines and then executed them

one at a time. You can highlight a sequence of commands and press Command-return to execute
them together. Type in these commands, highlight them, and execute them together:

You can also type them all in on one line and execute everything on that line:

Froward 100
unknown function Froward

The turtle moves forward 100
pixels again.

Forward
wrong number of inputs for Forward

Forward 100
Right 90
Forward 100

10

Forward 100 Right 90 Forward 100

Forward, FD

Forward distance

Move the turtle forward distance pixels. If the pen is
down, a line is drawn.

See also Back, PenUp, PenDown.

Related commands.

The command and any
alternative spellings.

Brief Description

How the command is invoked
– includes parameters.

You can see that Forward has an alternative, shortened, form – FD. The shortened forms of
commands can be handy when youʼre in a hurry.

The next line shows that Forward takes one parameter, distance.
Next is a description of what Forward does.
Finally, there are some links to other commands which are related in some way.
For many commands, youʼll also see some examples of their use.
This information can also be found in the ACSLogo Command Reference on the ACSLogo

website.

Other Commands
Weʼve only looked at Forward, Left and Right so far – these are the commands you will use

most of all, but there are many more commands — graphic commands like SetPenColour and
SetPenWidth to change the colour and width of the line drawn by the Turtle; commands which are
mathematical functions such as cos, sin, tan; control commands such as Repeat and If. Weʼll come
across these commands and many others in the following chapters.

Obviously this isnʼt quite as clear.

Help for Commands
You can get help for a specific command in two ways — highlight the command in the Main

window and then choose Look Up from the Help Menu; or hold down the Command key and
double-click on the word. Either will bring up the help entry for the command in the Help Viewer
window.

Letʼs look at the entry for Forward.

11

Command Output
Many commands write information back to you:

PenColour
1
Position
[100 100]

What Logo writes
back to you

What you type

Arithmetic Expressions
Anywhere you can write a number, you can write an arithmetic expression:

Logo evaluates the expression before passing it to the command.
You can also just type in an arithmetic expression, execute it, and Logo will evaluate it for you:

As a lot of commands output values, you can pass the output to another command. Here,
PenColour returns the number of the current pen colour, and SetPenColour sets it to a new value,
one greater than the old value:

Minus Signs
You might think that a minus sign is just a minus sign, but actually there are two flavours:

Unary minus is part of the number. Binary minus is an operator which has two numbers as its

Forward 100 - 10
SetPenColour 2 * 3

15 * 22.6 / 17
19.9412

PenColour
1
SetPenColour PenColour + 1
PenColour
2

-7 5 - 4
Unary Minus Binary Minus

12

arguments.
It's important that Logo can tell the difference easily. Imagine we've created a procedure called

Proc1 which takes two numeric parameters. What are the parameters in this call?

Is 5 the first parameter, or the result of 5 - 4? What is the second parameter? -3 or the result of
-4 - 3. Or have I mistakenly specified three parameters?

For these reasons, unary minus has to be immediately followed by a number with no
intervening space, and binary minus has to have a space between it and the following number.

Proc1 5 -4 -3

13

The Turtle
Before diving deeper into graphics, we need to understand the Turtle and how its status affects

drawing in the Graphics window. The most important thing about its status is its location, and to
understand that we need to look at the Canvas.

The Canvas
The Canvas is the Graphics window with all the gubbins — scroll bars, title bar, etc — taken

away. Itʼs where the turtle draws.
Imagine the canvas as a piece of graph paper.

x axis

y
ax

is

Origin
(0,0)

Half-way down the canvas is an imaginary horizontal line going from left to right — the x axis.
This is used to measure the distance across the canvas. The position half-way along the x axis has
an x-value of zero. Positions to the right have progressively larger values; positions to the left have
progressively smaller values.

Half-way across the canvas is an imaginary vertical line going from bottom to top — the y axis.
This is used to measure the distance up and down the canvas. The position half-way up the y axis

-x +x

+
y

-y

14

has a y-value of zero. Positions above this have progressively larger values; positions below it
have progressively smaller values.

The axes (plural of axis) meet in the middle, where they both have a value of zero. This is
called the origin. Any point on the canvas can be specified by stating its x and y values in the form
(x,y). The x and y values are know as the pointʼs co-ordinates. So the origin has co-ordinates of
(0,0).

Letʼs zoom in a bit closer and look at a couple of arbitrary points on the canvas. Weʼll call them
Point A and Point B, shown by red circles in the diagram:

87

69

61

177

x axis

y
ax

is

Point A

Point B

Remember, where the x- and y-axis cross, the values of x and y are zero. All along the y axis,
the value of x is zero, and all along the x axis, the value of y is zero. Point A is 87 pixels to the right
of the y axis, so its x co-ordinate is 87. It is 69 pixels up from the x axis, so its y co-ordinate is 69.
Point A is therefore at (87,69).

Point B is 61 pixels to the left of the y axis, so it has an x co-ordinate of -61. It is 177 pixels
above the x axis, so it has a y co-ordinate of 177. Point B is therefore at co-ordinates (-61,177).

You can change the size of the Canvas (and therefore the Graphics window) using menu
Special/Canvas Size… — youʼll then get prompted for the new width and height; or with the
command SetCanvasSize. For instance SetCanvasSize [600 480] will give you a canvas which is
600 pixels wide and 480 pixels high.

The Turtleʼs Position
When you start ACSLogo, open or create a document, or issue the command ClearScreen,

the Turtle is positioned at the origin, co-ordinates (0,0). It is actually the centre of the Turtle thatʼs at

15

The Turtleʼs position changes when you issue Forward or Back commands, but you can set the
Turtleʼs co-ordinates explicitly with these commands:

SetPosition [x-co-ordinate y-co-ordinate]
SetX x-co-ordinate
SetY y-co-ordinate

The Home command, like Clearscreen, moves the Turtle to the origin, but without clearing the
screen.

The Turtleʼs Heading
The Turtleʼs heading is the direction itʼs facing. Itʼs measured in degrees, so as there are 360

degrees in a circle, the Turtleʼs heading can vary from 0 to (just under) 360. A heading of zero is
straight up.

When the Turtle turns right (clockwise), the heading increases; when it turns left (anti-
clockwise), the heading decreases. This doesn't look quite right in the diagram above, because
turning left 90 degrees from a heading of zero gives a heading of 270. If you subtract 90 from zero,

this point. As the Turtle moves around the Canvas in response to your commands, its position
changes, but it always knows where it is, and you can query its current position by issuing some
commands:

Position
[100 80]
XPos
100
YPos
80

Co-ordinates in a list

 x co-ordinate

 y co-ordinate

90 degrees

180 degrees

0 degrees

270 degrees

16

If it turned another 40 degrees to the right (red arrow), it would have a heading of 30 + 40 = 70.
If instead it turned 145 degrees to the left (green arrow), it would have a heading of 30 - 145 =

-115. But remember we always give the heading as between zero and just less than 360, so the
heading is -115 + 360 = 245.

Commands affecting Heading
As weʼve seen, Right and Left affect the Turtleʼs heading, adding or subtracting from it

respectively.
You can also set the heading explicitly using SetHeading which takes a single numeric

parameter.
In addition, ClearScreen and Home set the heading to zero.

Visibility
The Turtle can be hidden with HideTurtle — This can make it easier to see what youʼve drawn.

It can be shown again with ShowTurtle. Shown? lets you query the Turtleʼs visibility.

you get -90 — but we always specify the heading as being between zero and not-quite 360, so if
you have a negative heading, just keep adding 360 to it until itʼs zero or above.

Similarly, going right 90 degrees from a heading of 270 degrees you might expect to give a
heading of 360 degrees — but again, the heading is always specified as being less than 360
degrees, so if you get a value of 360 or above, just keep subtracting 360 until you get less than
360.

The following diagram shows a turtle tilted 30 degrees to the right from the vertical (blue
arrow), so it has a heading of 30 degrees.

0 ∘

30 ∘

70 ∘

245 ∘

Left 1
45

Heading

Right 40

17

The Pen
What does the Turtle draw with? — A pen of course! The concept of a pen is used to hold the

attributes that affect the lines drawn by the Turtle. The Pen is considered to be right in the middle of
the Turtle.

Up or Down?
When we move the Turtle, we usually want it to draw a line, but sometimes we just want to

move it to a new position without doing any drawing. To do that, we ʻlift the Pen off the paperʼ so
that it doesnʼt draw anything. The command to do that is PenUp. After a Penup, no lines will be
drawn until you issue a PenDown.

Pen Colour
Drawing everything in black would be pretty dull, so we can change the Penʼs colour — the

colour it draws lines with — using SetPenColour, which takes a single numeric parameter. So what
does SetPenColour 3 mean? What colour is 3? Here, the 3 is not a colour in itself, but an index
into a list of colours.

This is the list of sixteen colours when ACSLogo starts
up. The first colour is Colour 0 (zero) at the top. The last in
this list is Colour 15. Beyond that, the colour numbers just
repeat the first 16, so colours 16 – 31 are the same as
colours 0 – 15, etc. However, you can set any colour
number to any colour you like, so this should not be
restrictive. See the graphics chapter for how you can
change colours with SetRGB.

So, to go back to our example, SetPenColour 3 will
set the Penʼs colour to the fourth item in the list, which is
blue.

PenColour returns the current Pen colour. Pen returns a list containing the Penʼs state (PenUp
or PenDown) and the Pen colour, and SetPen sets these attributes from a list.

Pen Width
You can change the width of the line the pen draws to get thick or thin lines. SetPenWidth can

be used to change the width of the pen from less than a pixel to bigger than the canvas.

18

SetPenWidth 1 Forward 60
SetPenWidth 10 Forward 60
SetPenWidth 50 Forward 60
SetPenWidth 100 Forward 60
SetPenWidth 200 Forward 60

PenWidth returns the current width of the Pen.

19

Datatypes and Variables
We've already seen the use of numbers in Logo — usually we pass them to a command such

as Forward. In this section weʼll look a bit more at numbers and what we can do with them; then
we'll look at the other datatypes that Logo can handle — words and lists. Finally we'll look at
variables which can hold the values of numbers, words, and lists.

Numbers
There are two types of number in Logo — whole numbers (integers) and floating-point

numbers (real numbers, numbers with a decimal point). Logo can convert between them, so you
don't need to worry about what sort of number you've got.

Something to watch out for — if you've got a number between 0 and 1, let's say 0.7 — you
have to keep the leading zero: Logo won't accept .7 as a number.

Operations on Numbers
You can use the usual arithmetic operators:

You can just enter an arithmetic expression in Logo and the program will evaluate it (output in
blue):

A couple of things to note here – Logo follows the usual rules for operator precedence:
multiplication and division have a higher precedence than addition and subtraction. This means
that * and / are evaluated before + and -, so in the fifth example above, 6 is multiplied by 3 first,
then 5 is added to the result. If you want the addition to happen first, you need to use parentheses

+ multiplication

- subtraction

/ division

* multiplication

5 + 6
11
12.3 * 100
1230
10 / 3
3.33333
6 - 4
2
5 + 6 * 3
23
(5 + 6) * 3
33

20

(as in example 6).
The other thing to note is that when the minus sign is used in subtraction, as in example four

above, there needs to be a space between it and the second operand. Otherwise this would look
like a negative number, -4.

Relational operators

These are used in comparisons. They return the value true or false depending on the
comparison:

Using the Not function reverses the boolean result:

We will see the importance of the relational operators in the chapter Command and Control.

Mathematical Functions
There are a whole load of trigonometric functions: Cosine, Sine, Tangent, ArcCosine,

ArcSine, ArcTangent - and their hyperbolic versions: Cosh, Sinh, Tanh, ArCosh, ArSinh, ArTanh.

Here are quick descriptions of some of the other number functions:

< less than

> greater than

= equals

5 < 6
true
5 > 6
false
3 = 3
true
4 = 3
false

Not 5 < 6
false
Not 5 > 6
true
Not 3 = 3
false
Not 4 = 3
true

21

Abs Output the absolute value of a number
Exp Returns e to the power of the input number
Integer Truncates the input number to its whole number portion
Log Returns the natural logarithm of the input number
Log10 Returns the base-10 logarithm of the input number
Pi Outputs the value of Pi
Power Returns parameter1 to the power of parameter2
Random Returns a random integer between zero and the input number
Remainder The remainder when parameter1 is divided by parameter2
Round Round the input to the nearest integer
Sqrt Output the square root of the input number

Some examples:

Abs -11
11
Integer 1.8
1
Round 1.8
2
Pi
3.14159
Random 10000
432
Power 10 3
1000
Log10 1000
3
Sqrt 225
15

22

Words
A word is just a sequence of characters. All these are words:

Herbert
schizoid
xyz
too much!!!
456

When you specify these to Logo, you must precede the word by a double quote character(").
This signifies to Logo that the sequence of characters is a word, rather than the name of something
like a function or variable.

In other programming languages, these are known as strings, and I will sometimes refer to
them as such.

When you specify a word, Logo needs to know where it ends. When it comes across a space,
or end of line, or an operator such as a plus sign, it terminates the string there. The trouble is that
sometimes we want the word to contain a space or other delimiting character. We can get round
the problem by using an escape character, the backslash (\).

Here are some examples:

Weʼll see later that itʼs easier to use lists to get around the problem.

Operations on Words
The arithmetic operators don't work with words, but the relational operators do:

There are a whole lot of functions for operating on words.
First we have two functions for telling you about the size of a word.

Count Returns the number of characters in the word
Empty? Returns true if the word has no characters

"QWERTY
QWERTY
"Too\ hot
Too hot
"A\ backslash\ looks\ like\ this\ \-\ \\
A backslash looks like this - \

"abc = "abc
true
"abc < "xyz
true
"abc < "ABC
false

23

Then we have functions for accessing parts of a word.

First Returns the first character of the word
Last Returns the last character of the word
ButFirst Returns all except the first character of the word
ButLast Returns all except the last character of the word
Item Returns a single character of the word

Then we have functions for constructing new words from other words:

FirstPut Returns the first input in front of the second input
LastPut Returns the first attached to the end of the second
Word Outputs the input words concatenated

So what's the difference between FirstPut and Word?
Word can take several input parameters, not just two as shown above. To do this, you have to

enclose the whole function call in parentheses. For example:

Count "QWERTY
6
Count "Too\ hot
7
Empty? "abc
false
Empty? "
true

First "QWERTY
Q
ButFirst "QWERTY
WERTY
Last "QWERTY
Y
ButLast "QWERTY
QWERT
Item 3 "QWERTY
E

FirstPut "ABC "XYZ
ABCXYZ
LastPut "ABC "XYZ
XYZABC
Word "ABC "XYZ
ABCXYZ

24

(Word "ABC "DEF "GHI "JKL "MNO)
ABCDEFGHIJKLMNO
(Word "Too "Much "Too "Young)
TooMuchTooYoung

Just a few miscellaneous functions left:
Word? Output true if the parameter is a word
ASCII Output the ASCII code of the first character of the input.
Char The opposite of ASCII - outputs the character for an ASCII code
LowerCase Outputs a word with all uppercase characters as lowercase
UpperCase Opposite of LowerCase
Member? Output true if the first parameter is a member of the second

Note that for Member?, this only works when the first parameter is a single character.

Word? "ABC
true
ASCII "a
97
Char 97
a
LowerCase "ABC1234\ abZ
abc1234 abz
UpperCase "ABC1234\ abZ
ABC1234 ABZ
Member? "a "ABC1234\ abZ
true

25

Lists
A list is like a word in that it is a sequence of objects, but whereas a word consists of

characters, a list can contain a number of different objects – words, numbers, or even other lists.
When you represent a list in Logo, you surround it with square brackets.
All of these are lists:

[A B C]
[1 2 3 4]
[abc def ghi jkl]
[1 27 [56 45] [12] [[v] g]]
[]

The last example is the empty list – one having no members.
Note that words within the list donʼt need to be preceded by a double quote (").
Spaces within the list separate its elements.
When you specify a list to Logo, characters between the [and] are read unchanged, so thereʼs

no need for the escape character. This makes it much easier to get a long sentence into a list than
into a word. So this is a valid list:

[c d * / "]

Operations on Lists
The only relational operator you can use is the = operator (less than and greater than donʼt

make much sense for lists). Try these examples:

A lot of the functions we saw used with words also work with lists:

Count Returns the number of characters in the list
Empty? Returns true if the list has no members
First Returns the first member of the list
Last Returns the last member of the list
ButFirst Returns all except the first member of the list
ButLast Returns all except the last member of the list
Item Returns the nth member of the list

[A B C] = [A B C]
true
[a b c] = [[a] [b] [c]]
false
Not [a] = []
true

26

FirstPut Makes the first input the first member of the second input
LastPut Makes the first input the last member of the second input

Instead of the function Word used to construct words, we have a couple of functions to help
construct lists, List and Sentence. These examples show the similarities and differences:

As you can see, Sentence strips off the outer brackets of the objects before it puts them into the
list.

Just one more list function, List?. This outputs true if its parameter is a list:

Count [A XYZ [a b c]]
3
Empty? []
true
First [ABC DEF GHI]
ABC
Last [47 45 []]
[]
ButFirst [Ax 23 [g h i] 29]
[23 [g h i] 29]
ButLast [Ax 23 [g h i] 29]
[Ax 23 [g h i]]
Item 3 [zzz [f g h] 27 3.4]
27
FirstPut "the [end]
[the end]
LastPut "stop [full]
[full stop]
Member? "abc [def abc ghi]
true

List 123 789
[123 789]
(List 57 48 123 110)
[57 48 123 110]
(Sentence 55 66 77)
[55 66 77]
List [abc] [def]
[[abc] [def]]
Sentence [abc] [def]
[abc def]

List? [New York London Paris Munich]
true

27

Variables
Up to now, all the values we've been inputting to functions have been literal values or literals.
Like all other programming languages, Logo can hold a value in a variable. A variable can

hold any type of value – a number, word, or list, or even a boolean (true or false) value.
The two things we can do with a variable are set its value (assignment) and get its value.
You need to give the variable a name – don't have spaces or any other odd characters in the

name and don't start it with a number.
To create a variable myNumber and set its value to one:

Make "myNumber 1
Then to get its value back:

:myNumber
Note that when setting the variable, we use " , when getting its value, we use :.
To increase the value of myNumber by one:

Make "myNumber :myNumber + 1
I can pass the value of myNumber to a function as if it was a literal number:

SqRt :myNumber
I can, if I like, then set the variable myNumber to contain a different type of object, such as a list

or a word:
Make "myNumber [abc def]
Make "myNumber "thingie

So a variable can be used to pass a value to a function. There is though, a situation where that
doesnʼt work. Remember the function SetPosition which sets the position of the Turtle from its
parameter, a list of two numbers. We can try and pass variables to it:

Remember that when you put things in a list, they appear in the list in exactly the same form as
you wrote them, so the first member of the list is not 20, but the word :x . This is easily
demonstrated:

The list has to be constructed dynamically using the List command:

make "x 20
make "y 50
SetPosition [:x :y]
SetPosition needs a list of two numbers

[:x :y]
[:x :y]

List :x :y
[20 50]

28

So this can be passed to SetPosition:

SetPosition List :x :y

29

Flow Control
So far, we've been issuing single commands, or a number of commands one after the other in

a block, like this sequence of commands to draw a square (Fd is short for Forward and Rt is short
for Right):

Fd 150 Rt 90 Fd 150 Rt 90 Fd 150 Rt 90 Fd 150 Rt 90

In this tutorial we'll be looking at some commands which will make it easier to issue repeated
sets of commands and a command for deciding whether to issue a command.

Repeating Commands
The example above has two commands (Fd 150 Rt 90) repeated four times. Rather than have

to write them out four times, we can use this construct:
Repeat 4 [Fd 150 Rt 90]

Repeat takes two parameters — a number and a list. The number specifies how many times
the commands in the list are to be executed.

We can build up complex patterns using Repeat. Here we've got an inner Repeat drawing the
box as before, while an outer Repeat draws the box 12 times, rotating through 30 degrees each
time:

CS Repeat 12 [Repeat 4 [Fd 150 Rt 90] Rt 30]

30

and here's a variation on the last pattern:
CS Repeat 12 [Repeat 4 [Fd 150 Rt 90] Fd 30 Rt 30]

Often when you're looping like this, you want to keep a count of what iteration of the loop
you're on. You can use a variable to do this. Say you want to print the first ten numbers. First you
initialise your variable:

Make "myNumber 1
Then Repeat the commands which will print the value of the variable and increment the

variable:

Repeat 5 [Print :myNumber Make "myNumber :myNumber + 1]
1
2
3
4
5

31

Run
For the case where you just want to run the commands in the list once, there is the Run

command. For example:
Run [ClearScreen Fd 200]

This looks like a fairly useless command — why not just run the commands in the list?
The power of this is that you can build a list of commands, store them in a variable and then run

the list later:
Make "cmd [ClearScreen SetPenWidth 20 Fd 200]
Run :cmd

Making Decisions
Logo has the IF statement to decide what action to take depending on whether a condition is

satisfied. An IF statement looks like this:
IF condition [true statements] [false statements]

The condition is an expression which returns true or false. We've seen examples of these sort
of statements already:

Of course, normally you'll be comparing the values of variables rather than literals to literals.

If the condition is true, the first list is executed, otherwise the second list is executed. Here's an
example:

Thatʼs It?
We seem to be missing a few constructs that are available in other programming languages:

while, for, repeat until. There's no equivalent in the Logo language, but you can get the same
effects using procedures - see the Using Procedures chapter.

Some More Examples
Here's just a few more examples using Repeat for you to try.
This example creates a spiral by reducing the amount to turn right each time through the loop:

Make "amount 20
CS Repeat 180 [Fd 8 Right :amount Make "amount :amount * 0.99]

5 > 6
false
Empty? []
true
"the\end = Word "the "end
true

Make "amount 20
if :amount < 30 [print "small][print "big]
small

32

Or something more angular:
Make "amount 10
CS Repeat 180 [Fd :amount Right 90 Make "amount :amount + 8]

I can multiply amount by -1, making its sign alternate between a negative and positive value.
Going right by a negative amount means going left:

Make "amount 4
CS Repeat 40 [Repeat 40 [Fd 1 Right :amount]Make "amount :amount * -1]

33

Procedures
Procedures are a means of making your logo code easier to understand by grouping a series

of commands together. Itʼs a bit like creating your own commands.
Letʼs consider drawing a square. To create one with a side of 300 pixels, we could say:

repeat 4 [forward 300 right 90]
or to use abbreviations:

repeat 4 [fd 300 rt 90]
If I then want to make a pattern from the squares by rotating in a circle, I get:

 repeat 36 [repeat 4 [fd 300 rt 90] rt 10]
Things soon start to get difficult to understand. To make it simpler, Iʼll make my commands to

draw a square into a procedure called box, so whenever I call box, Iʼll get a square drawn.

The Procedures Window
Select menu Window/Procedures to open the Procedures window:

On the left is a list of the procedures you've got defined. Currently there is none. We're going to
create a new one, so click on the New button:

34

An entry is added to the list and assigned the name newproc1. Overtype this with the name box
and press return. Type the box-drawing commands in the main text area:

35

Note that the name of the procedure is blue because the procedure has been changed
(created actually) but has not been applied. Press the Apply button to make the changes available.

We can now call the box procedure (after clearing the screen). Issue this command:
cs box

to invoke the commands in the procedure box.
The command to draw all the squares in a circle now becomes:

cs repeat 36 [box rt 10]
which is a bit easier to understand.

Parameters
The box procedure isn't very good if I need boxes of different sizes. Go back to the procedures

window, click on the Add button next to the Parameters list box, and overtype param in the list box
with the word size. You may need to double-click on it.

This will be our parameter, and is like a variable (I could have called it anything, but this is
meaningful). Change the body of the procedure to refer to the parameter:

repeat 4 [fd :size rt 90]
Note that the name of the procedure has become blue because we've made some changes.

Click on the Apply button to activate them.
Now to create a square of say, 150 pixels:

cs box 150
and our 'rotating square' command becomes:

36

cs repeat 36 [box 150 rt 10]
We can now use a variable to change the size of the box as we go:

cs make "amount 30
repeat 36 [box :amount rt 10 make "amount :amount + 10]

Comments
You can add comments to your procedure to remind yourself of what it does. Precede your

comments with a double-slash like so:

Note that comments appear in green, numbers are blue, and other text elements are coloured
to make it easier to read what's going on. If you don't like it, you can turn off this syntax coloration in
preferences.

Local Variables
You can declare a local variable in a procedure using the local keyword. This variable is

known only inside the procedure, but otherwise can be treated like other (global) variables:
local "lvar
make "lvar 10
make "lvar :lvar + 1

If there is a global variable of the same name, this is masked by the local variable whilst inside
the procedure. This stops the procedure from changing variables external to itself which just
happen to have the same name as its local ones. Using local variables is good practice as it saves
a procedure having unwanted side-effects.

Outputting Results
You can return a value from a procedure. Create a new procedure called TimesTen. Give it a

parameter called num. Make the body of the procedure:
output :num * 10

The procedure should output the value of the input number times ten. Try it out:
TimesTen 50

You should get the value 500.

Recursion
A procedure can call itself.
Let's consider the mathematical function factorial. factorial(4) gives the result of 4 x 3 x 2 x 1.

factorial (5) gives 5 x 4 x 3 x 2 x 1, etc. factorial (0) returns 1.

37

Stating this recursively, factorial(0) = 1, factorial(n) = n * factorial(n-1)
To implement this, create a new procedure called factorial. Give the procedure a parameter

called num, and make the body of the procedure:
if :num = 0 [output 1] [output :num * factorial :num - 1]

If the input parameter is zero, factorial returns 1, otherwise it returns the input number times
the factorial of the next number down.

Try these:
factorial 3
factorial 0
factorial 10
factorial 5

While and For
By using recursive procedures as in the previous section, you can control how many times you

execute the procedure — you don't need to decide how many iterations at the start, which you do
with the Repeat statement. This means you don't need a while or for statement.

However, they can be useful, and if you want to, you can roll your own.
Let's create a while procedure. The call for the procedure will look like this:

while [condition] [actions]
so the procedure takes two lists. Create a procedure called while, and give it two parameters

called condition and actions.
The start of the body of the procedure should look like this:

local "result
make "result run :condition

The first line is declaring a local variable called result. This is set on the next line to the result
of running the contents of the condition parameter. So, if condition was:

[5 > 4]
result would be set to true.
The rest of the procedure tests the value of result in an if statement:

if :result
 [

run :actions
while :condition :actions

]
 [
]

If result is true, the if statement runs the statements in the body parameter, and then calls itself
recursively with the same parameters. If result is false, it does nothing so the procedure
terminates.

Try out the while procedure by running the following two statements:

38

make "a 55
while [:a > 50] [print :a make "a :a - 1]

So let's have a go at creating a for procedure. We want it to look like this:
for variable-name start-value end-value [actions]

so a call might look like this:
for "i 1 10 [print :i]

so the procedure would set the variable i to 1, 2, 3, etc., up to 10 and for each of those values
would print the variable.

So create a procedure called for with parameters var, start, finish, and actions.
The first thing the procedure must do is set the variable i to the value of the start parameter.

Since the name of the variable is held in the var parameter, this is easy:
make :var :start

Then we need to test if we've finished in an if statement:
if NOT :start > :finish
 [

Run :actions
for :var :start + 1 :finish :actions

]
 [
]

If we haven't finished, we run the actions, then call the for procedure recursively with start
incremented by 1.

Apply the procedure then try this:
for "i 1 10 [print :i]

Thing
Consider a procedure which will make some change to a variable — let's call it increment.

When we pass the name of a variable to it, it increases the value of the variable by 1. So:
make "i 20
increment "i

would set variable i to 21.
Set up a new procedure increment with an input parameter called var.
For the body of the procedure, we can't say:

make :var :var + 1
because that would evaluate to:

make "i "i + 1
What we need is some way to get the value held by the variable whose name is held by var.

Logo provides a function, Thing, to do just that.
Make :var (Thing :var) + 1

39

Thing and its argument need to go in parentheses otherwise Logo tries to add 1 to :var first.

Importing Procedures

If you've procedures in one Logo document that you want to copy into another, you can simply
drag and drop from one document into another.

Select the procedures you want to copy, then drag them into the procedures window of the
other document.

40

Graphics
Weʼve already covered the basic drawing commands in earlier chapters — Forward, Back,

Right and Left. The chapter on the Turtle covered the Turtle, the Canvas and x- and y-co-ordinates,
and the Pen. Weʼll cover some further graphics topics in this chapter.

Colours
There are two ʻcurrentʼ colours that drawing can take place with — the Pen Colour, or

Foreground Colour, which is used for almost all drawing commands, and the Background Colour,
which is used to fill the Canvas when you issue Clean or Clearscreen.

You can see what these are set to by issuing the PenColour and Background commands:

The numbers you get back donʼt tell you much about what the colours actually look like. They
are not colours themselves, but indexes into a colour list:

PenColour
1
Background
0

This is the colour list when ACSLogo starts up. The
first colour is Colour 0 (zero) at the top. The last in this list
is Colour 15. Beyond that, the colour numbers just repeat
the first 16, so colours 16 – 31 are the same as colours 0 –
15, etc. However, you can set any colour number to any
colour you like, so this should not be restrictive.

The colour list is held separately for each document.
When you open a document or create a new one, the

colour list is set as shown, and the background colour is
set to entry zero (white) and the pen colour to one (black).

The colour of each entry in the colour list is specified by how much red, green and blue it
contains. So a completely red colour contains 100% red, no green, and no blue. A turquoise-ish
colour might contain no red, 60% green, and 60% blue, while black contains no red, green, or blue.

Because all colours are specified in terms of red, green, and blue, this system is known as the
RGB system. In ACSLogo, rather than specify amounts as percentages, you specify them as a
number between zero and one. So the RGB values for the red colour would be (1.0, 0.0, 0.0), and

41

for the turquoise-ish colour (0.0, 0.6, 0.6). Black is (0.0, 0.0, 0.0).
Here are some examples of colours and their RGB values.

Colour R G B

Red 1.0 0.0 0.0

Green 0.0 1.0 0.0

Blue 0.0 0.0 1.0

Black 0.0 0.0 0.0

White 1.0 1.0 1.0

Pink 1.0 0.7 0.7

Grey 0.5 0.5 0.5

Yellow 1.0 1.0 0.0

So, if I want to draw a line in red, I set the Pen colour to 2 by issuing SetPenColour 2, and if I
want to set the canvas to black, I issue SetBackground 1 and ClearScreen.

What if a colour I want is not in the list? Thatʼs easy enough — just set one of the list entries to
the RGB values you require using SetRGB, which takes two parameters, a colour number and a
list of RGB values:

SetRGB 3 [1.0 0.7 0.7]
This particular example sets pen colour 3 to pink. You then need to issue SetPenColour 3 to

use it for drawing, or SetBackground 3 and ClearScreen to fill the canvas with it.
You can query the RGB values for a colour number using command RGB:

The parameter is the colour number. It returns the red, green, and blue values.

Transparency and Opacity
So far, the lines we've drawn have completely obliterated everything underneath them — the

lines are completely opaque. We can make them partly transparent so that what was underneath
shows through.

The first diagram here is the spiro example from the Examples file in the install folder. In the

RGB 3
[1 0.7 0.7]

42

second diagram, Iʼve covered it in strips of an increasingly opaque red colour.

On the left-hand side of the second diagram, the red colour has an opacity of 0.0 – none of the
red colour can be seen. It has been set with the command SetRGB 2 [1.0 0.0 0.0 0.0] – the fourth
entry in the list is the opacity. For the next strip, list values are [1.0 0.0 0.0 0.1], then [1.0 0.0 0.0
0.2], until at the right-hand side, the red colour is completely opaque ([1.0 0.0 0.0 1.0]) and none of
the picture below it shows through. If you give SetRGB three values, Logo assumes that you want a
colour that is completely opaque.

Drawing Arcs
The Arc command is used to draw circles or parts of circles.
The position and heading of the turtle affect what is drawn. The arc is drawn centred on the

turtle's position, starting from a point directly ahead of the turtle, sweeping clockwise. The command
takes two parameters, an angle and a radius. Angle is the angle through which the arc is drawn,
360 being a full circle.

Note that Arc does not affect the heading or position of the Turtle.

Left 60
Arc 100 200

Radius
Angle

Radius

Angle

43

Text
Text is drawn by using the GraphicsType command. The command takes a single parameter

which can be a word or a list.
The text is drawn at right-angles to the turtle heading.
You set the size of the characters drawn using SetTypeSize. These commands demonstrate

the sort of thing you can do:

You can also change the font used by GraphicType. The command Fonts gives a list of fonts
available. You can then use any of these entries with SetFont to change the current font:

SetFont [AntiqueOlive-Compact]
The TextBox command outputs a list describing the size of its parameter if printed by

GraphicsType. The list is of the form [x y w h], where x,y is the co-ordinate of the bottom-left corner,
w is the box width, and h is the box height.

The textbox is not a bounding box - the height of the box is the line-height of the text, and the
width includes letter spacing on either side.

Filling Shapes
The squares and other shapes we drew in earlier chapters have been empty – weʼve just

drawn the outline. So how do we fill a shape with colour?
There are two standard Logo commands, Fill and Fillin.
In the following diagram, Iʼve drawn a square in blue (Pen colour 3) inside a red square (Pen

Colour 2). the Turtle is at the centre of both squares.

SetTypeSize 24
GraphicsType [zero degrees]
Right 45
GraphicsType [45 degrees]
Right 45
GraphicsType [90 degrees]

 zero degrees 45 degrees

 90 degrees

44

Fill

Fillin

Pen Colour 2 (current Pen colour)

Pen Colour 3

The current Pen colour is set to 2. If the fill command is issued, it keeps filling (from the current
position under the turtle) until it hits a boundary of the current Pen colour — it ignores the inner
square which is colour number 3.

Fillin keeps filling until it hits a border which is a different colour from the starting pixel (the one
at the turtle position).

There are a couple of problems with these two methods of filling. First, what is filled does not
depend just on the shape you've just drawn, but depends on what is on the canvas already, which
may be all sorts of stuff depending on what you've been drawing.

The second problem is to do with the way Mac OSX draws lines. To get the beautifully smooth
lines and text that you see in OS X, edges of lines can be drawn in a slightly different colour from
the colour that you asked for. This makes the lines appear smoother to the eye (and brain). This
technique is known as anti-aliasing. It means that the Fill command especially may not recognise a
thin border when it hits it.

We'll look at alternative ways to do fills in the Paths chapter.

45

Shadows
The SetShadow command sets a dropshadow for all subsequent drawing.

Here the SetShadow command makes the shadow drawn be offset 10 pixels to the right, 15
pixels down, and with a blur radius of 5 (the blur radius is a measure of how much the dropshadow
is spread). You can add a fourth parameter - pen colour, which specifies which colour to use as the
shadow colour.

To stop any more shadows being drawn on subsequent drawing, call SetShadow with the
empty list:

SetShadow []

ClearScreen
SetShadow [10 -15 5]
SetTypeSize 324
SetPenColour 2
GraphicsType "S

ClearScreen
SetShadow [10 -15 5 3]
SetTypeSize 324
SetPenColour 2
GraphicsType "S

S
S

46

Images
The DrawImage command draws an image from an image file.

The image is drawn at the turtle position, tilted by the turtleʼs heading. The first parameter is the
path of the image file in the file system (here the tilde (~) means the current userʼs home directory).
The file name usually has to be put in square brackets because it often contains a slash (/), which
Logo interprets as a division sign. If the name it doesnʼt contain slashes, spaces, or other
characters which have special meaning to Logo, it can be quoted as a string.

The second parameter to DrawImage is a list of up to two numbers. If the list has two numbers,
the first is interpreted as width and the second as height - the image is drawn with those
dimensions. If the second number is missing or is zero, the height is derived from the width,
maintaining the imageʼs aspect ratio. If the first number is zero and the second is not and is
present, the width is derived from the height. If both numbers are missing or zero, the image is
drawn at itʼs ʻnaturalʼ size.

Right 30
DrawImage [~/IMG_0014.JPG] [300 200]

47

Paths
We saw in the Graphics Chapter that the Fill and Fillin commands often don't give you what

you want — they fill pixels based on what is already on the canvas.
I've added to ACSLogo a non-standard command called FillCurrentPath. This command

doesn't care what is on the canvas already. It just tries to fill the last shape drawn. To understand
exactly what it does, we need to understand the concept of the current path.

When you draw a line (using Forward, Arc, etc.), ACSLogo adds the line to the current path,
which is just a list of the lines draw. The command CurrentPath returns the contents of the current
path as a list of lists:

The ClearScreen command caused whatever was in the current path to be cleared, and made
the Turtle move to x co-ordinate zero, y co-ordinate zero. At this point, nothing has been draw, so
the current path is still empty. The Forward command made the Turtle move from co-ordinates (0,0)
to (0,200). This generated the moveto and lineto entries in the current path.

As long as the pen stays down (so drawing is done), entries are added to the current path:

Issuing PenUp clears the current path:

FillCurrentPath
The main point of keeping a current path is to be able to fill the shape you've just drawn easily.

After drawing, say, a rectangle, you can just issue FillCurrentPath and it will fill the shape in the
current pen colour. With Fill and Fillin, you have to position the Turtle somewhere in the middle of
the shape after drawing it before issuing the command.

ClearScreen
Forward 200
CurrentPath
[[moveto 0 0][lineto 0 200]]

Right 90
Forward 100
CurrentPath
[[moveto 0 0][lineto 0 200][lineto 100 200]]

PenUp
CurrentPath
[]

48

StrokeCurrentPath
You can also issue StrokeCurrentPath to draw a line around the path with the current pen

width and pen colour.

Saving Paths
Because the current path is just a list, you can save it in a variable:

This can then be used in StrokePath and FillPath which are similar to their current path
equivalents, but each takes a path as parameter. The value of this can be seen in the next section.

Text
When you draw text using GraphicsType, the text is added to the current path. By saving it in a

variable, we can get some interesting effects. First letʼs draw a big letter and save it in the current
path:

If we issue ClearScreen, it clears the current path, but we have the path saved in a variable
which we can fill and then stroke to get an outlined letter:

Make "p CurrentPath
:p
[[moveto 0 0][lineto 0 200][lineto 100 200]]

SetPenColour 1
ClearScreen PenUp
SetPosition [-150 -150] PenDown
SetTypeSize 400
GraphicsType "S
make "p CurrentPath

49

I can then add a further dash of interest by stroking with a dashed white line:

SetLineDash [0 20 20]
SetPenColour 0
SetPenWidth 9
StrokePath :p

ClearScreen
SetPenColour 2
FillPath :p
SetPenWidth 11
SetPenColour 1
StrokePath :p

50

Holes
When you look at the letters that make up words, such as the one below:

you can see that some letters contain ʻholesʼ. Letters are just filled paths. The letter ʻoʼ, for
instance, is just a small ellipse inside a bigger one. When the bigger ellipse is filled, why doesnʼt
that just fill in the smaller ellipse as well?

Letʼs look at simpler shapes — rectangles — and try a few things out. First I draw a rectangle
and save the path in a variable called bigrect:

Then I move in a bit and draw a smaller rectangle and save its path in a variable called
smallrect:

Pogo

SetPenColour 1
Repeat 4 [Forward 150 Right 90]
Make "bigrect CurrentPath

51

Next I join the two paths together with the Sentence command, which joins two lists – this is to
make the two paths into one object – then fill the path and stroke it:

You can see that the fill has just filled in both rectangles - there's no ʻholeʼ. This time Iʼll draw
the small rectangle in a different way — first Iʼll go right, then draw the rectangle going anti-
clockwise:

This time weʼve got the hole — so holes in overlapping shapes are dependent on which
directions their paths ʻwindʼ.

PenUp SetPosition [40 40] PenDown
Repeat 4 [Forward 70 Right 90]
Make "smallrect CurrentPath

Make "p1 Sentence :bigrect :smallrect
SetPenColour 2 FillPath :p1
SetPenColour 1 StrokePath :p1

PenUp SetPosition [40 40] PenDown
Right 90 repeat 4 [fd 70 Left 90]
Make "smallrect CurrentPath
Make "p1 Sentence :bigrect :smallrect
SetPenColour 2 FillPath :p1
SetPenColour 1 StrokePath :p1

52

You can see the directions of the paths in this diagram:

The outer rectangleʼs path goes clockwise, the inner one anticlockwise.
This nesting can go on indefinitely, with each path going in the opposite direction to the one

outside it:

The path is accumulated in a variable called a1. Each iteration through the loop, its direction is
reversed using command ReversePath, and itʼs concatenated with the current path (which is the
arc just drawn). This means that we end up with a path of circles, each going in the opposite
direction to the previous one.

Overlapping objects so that one does not lie entirely within the other gives us more scope for
creativity.

Make "radius 180
Make "a1 []
Repeat 9
[

ClearScreen
Arc 360 :radius
Make "a1 Se ReversePath :a1 Se

CurrentPath [[close]]
Make "radius :radius - 20

]
ClearScreen FillPath :a1

PenUp right 30 Back 60 Left 30 PenDown
Repeat 4 [Forward 120 Right 90]
Make "a1 LastPut [close] CurrentPath
PenUp Right 30 Forward 60 Left 30
Right 57 Forward 100 PenDown Arc 360 70
Make "a2 reversepath LastPut [close] CurrentPath
PenUp Back 100 Left 57
Make "a2 Se :a1 :a2
SetPenColour 2 Fillpath :a2
SetPenColour 1 StrokePath :a2

53

The complications in the code are mostly due to positioning prior to drawing the square and
the circle, as I want them offset from the canvas origin and from each other. Also, Iʼve deliberately
used relative commands to do the positioning (Left, Right, Forward, Back) rather than absolute
commands (SetPosition, SetHeading).

To simplify following code, Iʼve put all that code in a procedure called shape and replaced the
last three lines with Output Se :a1 :a2. So the procedure outputs the path and doesnʼt draw it.

In the following diagram, the drawing on the left shows the result of stroking the output from the
shape procedure. For the middle drawing, shape is called again after the Turtle has turned left 30
degrees. For the last drawing, that has been repeated another ten times.

If I fill the shape, I just get a big blob:

Reversing the path each time through the loop gives us some more interesting holes:

Make "p []
Repeat 12
[
 Make "p Se :p shape
 Left 30
]
ClearScreen
SetPenColour 2 FillPath :p

Make "p []
Repeat 12
[
 Make "p Se ReversePath :p shape
 Left 30
]
ClearScreen
SetShadow [15 -15 11]
SetPenColour 2 FillPath :p
SetShadow []
SetPenColour 1 StrokePath :p

54

Note that I've added a shadow before doing the fill — this helps show that the holes are really
holes and not just white-coloured bits of the pattern.

Finally, this is the same pattern,
but the fill has been done in white,
then a stroke has been done with a
black line, then another stroke with a
thinner white line over it.

55

Vector Graphics
The paths we've been talking about are examples of vector graphics — they store the image

as a collection of lines (straight and curved) rather than as tiny rectangles of colour (pixels) which
bitmap images are stored as.

The advantage of a vector-based image is that it can be magnified indefinitely without loss of
quality – with a bitmap-based image, the more you magnify it, the more you will see the pixels
making it up – like sticking your face against a TV screen. If youʼre viewing this from a PDF file on a
computer, you can see this for yourself by looking at these seemingly identical images:

Zoom in on the page using the zoom button in the program youʼre viewing this with. Keep
zooming in , and after two or three zooms, you should see that the image on the left starts to look
pixellated, while the one on the right remains sharp. The left-hand image is a bitmap, while the one
on the right is a vector graphic.

If youʼre reading this on a printed page, Iʼll have to do the zooming for you – Iʼll choose the last
letter in this paragraph.

See how much better quality the zoomed vector graphic image is.

Exporting Vector Graphics
If you want to save an image youʼve slaved over in ACSLogo, you need to export it. You can

export it as a bitmap (Export/Graphics) or as vector graphics (PDF or SVG). You need to decide
whether you want the ease of use of a bitmap to say, embed in a web page, or a high-quality
stand-alone vector graphic – a PDF; or a high quality vector graphic which can be embedded in a
web page if you know what youʼre doing, but isnʼt viewable by all browsers – SVG.

When you export a bitmap, you get exactly what you see on the canvas (apart from the Turtle).
When you export vector graphics, you get the path version of the graphics, like you get with the
CurrentPath command. ACSLogo keeps all the paths that have been drawn since the last

If youʼre reading this on a printed page, Iʼll have to do the zooming for you – Iʼll choose the last
letter in this paragraph.

56

ClearScreen command. When these are exported, the image is subtly different from the image on
the canvas. Just like when using StrokePath and StrokeCurrentPath, line-joins will be neater,
and the results of Fill and FillIn commands will not be exported.

57

Clipping Paths
So far weʼve been accustomed to all of our drawing appearing on the canvas, as long as we

draw within the bounds of the canvas. The edges of the canvas ʻclipʼ any drawing you do, so that
nothing is drawn outside of it. We can actually use other shapes to clip our drawing - in fact we can
use anything which can be expressed as a path, such as a letter or circle:

In the first example, the clipping path is created by drawing a large letter A, then saving the
current path in a variable:

The path description of the letter A has been saved in variable savep. First Iʼll use it to draw the
blue background:

Then I set the clipping path using command SetClipPath. The command takes a single
parameter — the path I saved before:

Then I can draw whatever I want, and it will all be clipped to the clipping region. For the
example above, I used the heppel procedure from the examples file in the ACSLogo download
folder. I used pen colour 4.

To turn off the clipping path, call SetClipPath with an empty list as its parameter:

SetFont [Times-Bold]
SetTypeSize 400
PenUp SetPosition [-160 -70] PenDown
GrType "A
Make “savep CurrentPath

SetPenColour 3
FillPath :savep

SetClipPath :savep

58

Finally, I outline the path in red:

The example on the right was done in a similar way — the circular clipping path was drawn
using the Arc command, and the internal pattern was drawn using the PeanoX procedure from the
examples file in the ACSLogo download folder.

SetClipPath []

SetPenColour 2
StrokePath :savep

59

Files
In this tutorial, I'll be looking at how you can read from and write to files within ACSLogo. You

need a fairly basic understanding of the OSX file system — how files exist within directories, that
sort of thing.

There are two types of commands that deal with files — file manipulation commands, which
are used to open, read and write files, and file management commands, which give you
information about the file system and let you change your location within it. We'll cover the latter
commands first.

File Management Commands
These commands are simple versions of Unix shell commands that you can use in the

Terminal application.
First of all, you need to know where you are in the file system — this position is the current

working directory, and is the place where any files you write will be written to and any files you read
will be read from.

The command for this is pwd (this is the same name as the unix command and stands for print
working directory).

When I issue the command, I get:

See what happens when you issue the command— you should get something different.
Since pwd is just outputting a string, you can store it in a variable:

To change your position within the file system you can use the CD (change directory)
command. CD takes one parameter, which can be a string or a list.

Consider the following file system. At the moment, the current directory is /Users/alan/
documents:

pwd
/Users/alan/Documents

make "temp pwd
:temp
/Users/alan/Documents

60

I can use the CD command to change my position. If I issue:
CD "..

(two full stops or periods) I go up a level. Remember that the parameter to CD has to be a
string or a list.

I'm now positioned here:

If I now issue:
CD "Movies

my current directory changes to Movies:

alan

Documents Movies

Users

/

alan

Documents Movies

Users

/

61

alan

Documents Movies

Users

/

Rather than go up and down the directory hierarchy incrementally, I can specify a complete
path — say I want to move to the Documents directory, the full path is /Users/alan/Documents. If I try
and give that as a parameter to CD, I get an error:

This is because the / character, which is used to delimit directory names, is interpreted by the
ACSLogo parser as a divide operator. To get the full pathname input to CD without being tampered
with, I need to put it in a list:

Another useful thing to know is that as shorthand for the home directory (in my case /Users/
alan), you can use a tilde (~). This can be used on its own or as part of a path:

If you give CD an empty string or empty list as input, it will make the home directory the current
directory:

All this typing is a bit un-maclike. To save some time, you can drag a directory from a finder
window into the ACSLogo Main window. The full pathname of the directory is pasted into the
document, and you can wrap it in brackets and put CD in front of it.

These are the steps:

CD "/Users/alan/Documents
unknown function Users

CD [/Users/alan/Documents]
pwd
/Users/alan/Documents

CD [~/Movies]
pwd
/Users/alan/Movies

CD "
pwd
/Users/alan

62

1. From a finder window, drag a folder over the ACSLogo Main window:

2. A cursor will appear. Position it where you want to drop the directory name, and press
Control:

3. Release the mouse button, and the full path name will appear:

63

To see what files are in the current directory, use the Dir command. This lists the files one per
line. So that you can distinguish directories, each one is followed by a /:

File Manipulation Commands

In this part, we'll look at writing to files and reading from them. The process for writing to a file
is:

Open a file for writing
Write data to the file
Close the file

The process for reading from a file is:
Open a file for reading
Read data from the file
Close the file

pwd
/Users/alan/Documents
Dir
.localized
dabsOrder.pdf
DVLA/
edp24.pdf
Einstein.doc
Einstein.pdf
FAXstf X User Data/
file1.graffle
Installer Logs/
Microsoft User Data/
ms.pdf
YarisRegistration.jpg

64

Let's look at writing to a file first.
To open a file for writing, issue OpenWrite. This takes a parameter which can be a string or a

list:
OpenWrite "testlogo.txt

Issue the command above to open the file in the current directory.
There are a number of commands for writing data into the file. These are all variations of

commands we've seen already, prefixed by an F:
FPrint
FType
FShow

Let's write some data to the file. Issue these commands:
FPrint [the end]
FPrint [of the world]
FPrint [is nigh.]

Then we need to close the file. Issue this command:
CloseWriteFile

Now go into the OSX Finder and find the file testlogo.txt. If you double-click on the file, it
should open in TextEdit. Check that the contents match the FPrint statements above.

So much for writing to a file. Now we'll try reading from one. We'll use the file we've just written.
To open it, issue:

OpenRead "testlogo.txt
To read a line from the file into a word, issue:

FReadWord
To read a line from the file into a list, issue:

FReadList
If you keep issuing FReadList, you eventually get an empty list back. To close the file, issue:

CloseReadFile

65

Movies
The algorithmic drawings we can do in logo respond very well to being animated. With

animation, we can change the items we've drawn with respect to their location, colour and shape
over time.

With examples like the Sierpinski triangle which vary according to an input parameter (level),
animation can show the variation in the triangle as the level is changed.

All animations consist of a sequence of images or frames. ACSLogo uses the Snap command
to capture each frame.

Animation in ACSLogo
The process is:

Create a new movie file
Repeat several times:

Draw an image
Snap the image

Close the movie

You'll probably need to ClearScreen before you draw each frame.

An Example
Let's work through an example. What we'll draw in this animation is an outlined letter. The

animation will show how the shape of the letter changes as we increase the thickness of the
outline.

The size of the each animation frame will be the size of the graphics window. It's probably too
big at the moment. Using the Special/Canvas Size… menu, set the canvas size to 400 pixels wide
and 400 pixels high.

First we need to set the size of the type. Execute this command:
SetTypeSize 250

Then letʼs try drawing a capital 'S':
GraphicsType "S

Let's move the turtle a bit to make the letter more central:
SetPosition [-100 -100]

I can do a Clean command to clear the screen without moving the turtle, then draw the 'S':
Clean GraphicsType "S

now I'm going to combine these with commands to draw the letter in colour 2, then outline it in
colour 1:

Clean SetPenColour 2 GraphicsType "S SetPenColour 1 StrokeCurrentPath

66

For the animation, I'm going to repeatedly do the strokepath while increasing the pen width
each time.

Let's start the movie. Choose Create Movie… from the Special menu and choose a location
and file name to save it to. Then complete the Compression Settings window as shown:

We'll first set a variable called pathwidth to 1, and increase it as we go through the movie. Let's
do the set-up stuff and Snap the first frame of the movie:

SetTypeSize 180
SetPosition [-205 -60]
Clean SetPenColour 2 GraphicsType "Logo
Make "pathwidth 1
SetPenWidth :pathwidth
SetPenColour 1
StrokeCurrentPath
Snap

Now we'll capture all the frames. Lets capture 60 of them. For each frame, we'll do a
StrokePath, then increase pathwidth and call SetPenWidth:

Repeat 60 [Make "pathwidth :pathwidth + 2 SetPenWidth :pathwidth
StrokeCurrentPath Snap]

Select Finish Movie from the Special menu. If you hold down the Option (alt) key, you can
select menu item Finish Movie and Open which opens the movie after saving it. Otherwise, find
your movie in the Finder and double-click on it to watch it.

67

Speech & Music
OS X has the ability to synthesize speech, and Quicktime has the ability to play synthesized

musical instruments. ACSLogo has commands which can tap into both of these capabilities. In this
chapter, itʼs a good idea to copy and paste the commands into the ACSLogo main window to try
them out for yourself.

Speech
Speech is fairly simple. You use the Say command. Give it a word or list as its parameter. in

general it's easier to use a list. Issue this command:
Say [Hello there]

You can change the voice of the speech synthesizer using SetVoice.
SetVoice [com.apple.speech.synthesis.voice.Albert]
Say [Hello there]

Issue the Voices command to get a list of available voices:
Voices

Use Voice to show the current voice:
Voice

When you issue the Say command, the command finishes straight away, which the speech is
still being said. This means that two Say commands in quick succession will cause the second
command not to be spoken, because the first is still being said. To show this, issue these two
together:

Say [The end of the world]
Say [is nigh]

To wait until the previous Say command has finished, use WaitForSpeech:
Say [The end of the world]
WaitForSpeech
Say [is nigh]

Music
Music is more complicated. the main ACSLogo command is Play.
The easiest way to approach this is to look at an example. Issue this command:

Play [1 [60 100 60]]
Playʼs parameter is a list. The first element of the list is an instrument number — in this case 1,

which is a grand piano. To get a list of the instruments available, issue this command:
Instruments

The instrument number input to Play, though, can only be a number - it can't be one of the
descriptions.

68

The second element of the list is another list, and this represents a note. The first item in the
list, 60, is the duration of the note. The time is measured in ticks, which are sixtieths of a second, so
60 ticks is one second. The second item in the list is the loudness (sometimes called acceleration
— how hard the note is hit). In this case it's 100. The maximum is 127. The third item represents the
note itself — 60 is middle C. The notes are numbered like keys on a piano keyboard, including the
black notes, so E is 64, G is 67, and C of the next octave up is 72.

To play a chord rather than a single note, add other notes to the end of the note-list:
Play [1 [60 100 60 64 67 72]]

To play the notes one after the other rather than simultaneously, each note requires its own
note-list:

Play [1 [60 100 60][60 100 64][60 100 67][60 100 72]]
To play more than one instrument at a time, group the list for each instrument into another list.

In the following example, the first instrument is a grand piano (1), the second instrument is a
woodblock (116) playing twice as fast. Select all the lines and execute:

Play [[1 [60 100 60][60 100 64][60 100 67][60 100 72]]
[116 [30 100 60] [30 100 60] [30 100 60] [30 100 60] [30 100 60] [30 100 60] [30 100 60]
[30 100 60]]]

69

Appendix A: Menus
The ACSLogo Menu

The ACSLogo menu contains the standard OSX entries. For more details on Preferences,
see Appendix B.

The File Menu
The File menu contains the standard OSX entries:

New creates a new untitled document
Open… shows a dialog to open an existing ACSLogo file
Open Recent contains a submenu of recently edited documents
Save saves the current document
Save As… saves the document under a new name

70

Save To… saves a copy to another name
Export expands to a submenu - explained below.
Revert To Saved restore the document to the last saved version
Page Setup choose printing attributes
Print… print the document
Print Selection… print selected text

The Print… menu will print whichever window is frontmost, so if you want to print from the
graphics window, bring that to the front; if you want to print from the main window, bring that to the
front.

The Export Submenu
Manu items in the Export submenu allow you to save graphics or text. Each will prompt for a

destination file to save to.
Text… is the only entry which exports text — it exports text from the main window. All the

others export from the graphics window.
Graphics… exports the Graphics window as a bitmap file. In the save panel which opens, you

can choose between various bitmap formats such as JPEG, TIFF, PNG, and others available on the
system.

All the other export menu items export vector graphics which can be scaled without losing
resolution. Anything drawn by the turtle on the canvas is also saved as vector graphics, and this

can be saved using the following menu items:
SVG — Scalable Vector Graphics — is a standard format which can be embedded in web

pages. At the time of writing, current versions of Safari, Opera, and Firefox support this format.
EPS — Encapsulated Postscript — outputs a file consisting of Postscript commands. Postscript

is both a programming language and a page description language for printers. It's generally more
practical to use PDF.

PDF has become a standard for interchange of documents. Since it can be read in OSX with its
built-in software (Preview), and by the free Adobe Reader on the Mac and other platforms, it's a
good choice to use.

ACSDraw is an illustration program which I have written, amongst other things, to do this
documentation.

71

The Edit menu
This is the standard OSX Edit menu:

It contains all the menu items found in text editing programs such as Textedit.

The Special menu
This is basically a group of items which don't fit anywhere else!

The Format submenu expands to a series of menu items which relate to text formatting. These
are the same as other text-editting programs such as Textedit, so I won't go into them further here.

Canvas Size… is used to change the size of the Graphics window — a dialog is displayed
allowing you to choose a new width and height for the window:

72

The fields are initially set to the current size. Values are in pixels.
Execute is used to execute a command. It will attempt to execute the highlighted text in the

main window, or if nothing is selected, the line holding the text cursor.
Abort is the opposite to Execute. If a command is running, Abort will stop execution.
Create Movie… starts the process for exporting a Quicktime movie, first of all prompting you

for somewhere to save it, then asking for the movie attributes such as compression. See the
chapter Making Movies.

Finish Movie is used at the end of the movie-creating process, after capturing all the frames for
the movie. It finalises the movie and closes the file. If you hold down the option (alt) key while
displaying this menu, you get Finish Movie and Open, which opens the movie in your default
application for opening Quicktime movies (usually Quicktime).

The Window Menu
The Window menu is a fairly standard OSX Window menu. The first three entries are standard:

Minimize Window send the window to the Dock.
Zoom Window toggle between window sizes
Bring All to Front put all ACSLogo windows in front of other applications'

windows

The Full Screen menu entry can be used to put the Graphics Window into full screen mode,
i.e., you will not see the menu bar or any other windows. The Graphics Window needs to be at the
front, and you will probably want to set the Canvas Size to the size of the screen. In general, this is
not much use, because you cannot get to the Main Window to type in commands, but it can be
used as a sort of ʻkiosk modeʼ where a procedure is running for a long time, or the program is being
controlled remotely via Applescript (see Appendix E).

The next block of entries are to do with hiding and showing windows. They are all Hide or
Show followed by a window name:

Graphics the window containing the turtle; where all drawing takes
place

Procedures the window used to create and edit procedures. See the
Procedures chapter.

Trace Used to trace the execution of commands and
procedures.

Info Information about the state of the Turtle, current colours,
etc:

73

The Help Menu

Individual Help sections

Tutorials

74

If you are running Leopard (OSX 10.5) or above, the first entry is the Spotlight search item. You
can type text directly in here to find an item in ACSLogo Help.

The next item, ACSLogo Help, takes you to the help for ACSLogo in the OSX Help Viewer
window.

In the next group of items, Website takes you to the ACSLogo website, www.alancsmith.co.uk/
logo. Email will open a new email in your email client (such as Mail) to send me feedback.

The next item, Look Up, is used to look up individual commands in the Help files. To use this,
select a command in the main window and then choose Look Up. You can also hold down the
command key and double-click on a command.

The next block of commands relate to individual sections in the Help files. This is quicker than
choosing ACSLogo Help and drilling down.

The final block of entries contains the tutorials. These are files held in the tutorials folder
which should be in the same folder as the ACSLogo application – so you can add to and remove
from the folder if you like and ACSLogo will pick up the changes on restart and change the display
of the menu accordingly.

75

Appendix B: Preferences
Choosing Preferences… from the ACSLogo menu, displays the Preferences window:

The preferences window has three tabs. The first one that opens is the Turtle tab.

The Turtle Tab
It has a large pane in the middle which shows the current appearance of the turtle. This will

change as you change settings in this tab.
The Turtle Size slider changes the size of the turtle. Drag it upwards to increase the size of the

turtle, downwards to decrease the size.
The Turtle Transparency slider changes the transparency of the turtle. The advantage of

making the turtle more transparent (by dragging the slider down) is that you can see the drawing
taking place under the Turtle, while still keeping an eye on the position and heading of the Turtle.

Draw Shadow turns on a shadow under the turtle. This is purely for appearanceʼ sake, giving
the Turtle some solidity.

76

Smooth Lines causes lines drawn by the turtle to be anti-aliased, or smoothed, reducing the
jagged appearance. This is the technique used by OSX to make fonts appear smooth. You can see
the difference with these lines:

Anti-aliased (smoothed)

Not Anti-aliased (unsmoothed)

The Wrap checkbox determines what the turtle does when it gets to the edge of the canvas. By
default, it just goes of the edge, and you can't see it anymore. If you turn on Wrap, the turtle comes
in the other side. Let's look at an example of a window which is 400 pixels wide by 400 pixels high.
The left-hand examples have Wrap off, the right-hand examples have it on.

This is the starting position after a Clearscreen command with the turtle at position (0,0) - the x
co-ordinate is zero, and the y co-ordinate is zero.

Now issue Forward 150. This increases the y co-ordinate by 150.

Wrap Off Wrap On

Starting position
(0,0)

Top of canvas
(0,200)

Bottom of canvas
(0,-200)

77

Wrap Off Wrap On

New position
(0,150)

Then issue Forward 150 again. This increases the y co-ordinate from 150 to 300.

Unwrapped position is offscreen
(0,300)

Wrapped position
(0,-100)

The unwrapped Turtle has gone past the top of the canvas at y=200, so is no longer visible.
The wrapped Turtle, hitting the top of the canvas after travelling 50 pixels, comes in the bottom

of the canvas. It still has 100 pixels to go (it was told to go forward 150 pixels), so draws a line from
y=-200 to y=-100.

When drawing a line which is much longer than the canvas dimensions, the wrapping may
occur several times. For instance, given the commands:

Right 5
Forward 1050

78

You get this result:

The Turtle Speed slider allows you to change the speed of the Turtle. In previous versions of
the program, as the Turtle moved forward, drawing a line, the line would be drawn (taking
milliseconds), and the Turtle would just be drawn at the end of the line. So, when drawing a
rectangle, you would just see the Turtle drawn momentarily at each corner. This is not very good
for teaching purposes, as you get no impression of the Turtle ʻtravellingʼ along itʼs route. The slider
changes this - when the slider is at its maximum (its rightmost setting), the turtle moves as quickly
as in previous versions. When you drag the slider to the left, the Turtle moves more slowly, and you
can see it travel from position to position, and rotate slowly as well.

Near the bottom of the Preferences window is an array of Turtle images. Select any of these to
use it as the Turtle image. You can even add your own turtle image by dragging an image into the
array. The image needs to have a transparent area around the turtle – otherwise a white rectangle
gets drawn around the turtle. This means you probably need to use a TIFF or a PNG image. For
more details, see Appendix C: Roll your own Turtle.

At bottom right is the Defaults button - hit this to reset the Turtle preferences to their defaults.

The Editing Tab

Under the ʻMain Windowʼ heading is a Pop-up menu entitled Secondary Execute Key. Under
the default set-up, you need to hold down the command key when you press return in order to
execute a command. This Pop-up menu allows you to specify an additional key to execute a
command: you can specify return or a function key. Normally, pressing return on its own just inserts

79

a line in the text. if Return is selected from the Pop-up menu, pressing the return key will execute
the command. This makes it similar to traditional command-line versions of Logo. To insert a
newline in the text, hold down the control key while pressing enter. You can also specify a function
key as the secondary command key. This will work as long as the function key is not assigned to a
system function (such as Exposé).

Under the Procedures Window heading are a number of controls which affect editing in the
Procedures window. All text in the procedures window has the same font. This can be set using the
Font and Font Size pulldowns.

Checking the Syntax Coloration checkbox causes brackets and operators to appear in
different colours from the main text.

When the Auto-indent checkbox is checked, if you indent a line by a number of spaces and
press enter to insert a newline, the next line is indented by the same amount.

The Localisation Tab
This contains just one checkbox — Use localised Logo commands. If a non-English

language is topmost in the Internationalisation pane of System Preferences, and a command
mapping property list is available in the ACSLogo application (as with French and German), and
the checkbox is checked, localised commands can be used instead of English ones.

80

Appendix C: Roll Your
Own Turtle

The Turtle pane of the Preferences window allows you to define your own turtle. The array of
turtles at the bottom allows you to drag in an image of your choice.

Drag image here

The turtle image should be square, and the ʻTurtleʼ should be facing upwards. The area
around the Turtle should be transparent rather than white so that it does not draw a white square
over the background. For this reason, the image should be in a format which supports
transparency such as PNG or TIFF. This can be prepared in Photoshop using layers, but if you
donʼt have Photoshop, hereʼs a way using a drawing done in ACSLogo itself.

Rather than creating a drawing of my own, Iʼll use a symbol from a symbol font.
Set your canvas size to about 400 x 400 pixels, then try these commands:

The result should look something like this:

The ʻpencilʼ is a symbol from the
Zapf Dingbats font, and is equivalent to
the slash character in a normal font. I
have drawn it in giant size – 200 points.

ClearScreen
SetFont [ZapfDingbatsITC]
SetTypeSize 200
GraphicsType [/]

81

To use the symbol as a turtle, I need to centre it in the canvas and make it point upwards. Itʼs
pointing to the right at 90 degrees, so if I turn the Turtle to the left before drawing the symbol, it
should have the correct orientation:

Mouse Pointer
co-ordinates

Mouse centred
over symbol

ClearScreen
SetFont [ZapfDingbatsITC]
SetTypeSize 200
Left 90
GraphicsType [/]

Itʼs pointing the right way now, but itʼs not centred
– itʼs offset up and to the left – so if I offset the Turtle
down and to the right before drawing, it should be in
the right position. I can estimate the amount to offset
by using the Info window, and positioning the mouse
pointer at the centre of the symbol.

Here, the co-ordinates are (-69, 96), so if I move
the turtle to (69,-96) before drawing, the centre of the
symbol should end up at (0,0).

82

The white background from the canvas has been drawn as well, drawing over the background.
This is not what we want — that area should be transparent so that only the symbol itself is drawn.
Back to the drawing board, er, canvas.

So we need to draw a transparent background. This is done by setting the opacity for colour
zero (the background colour) to zero. The ClearScreen command will then set the background to
completely transparent:

ClearScreen
SetFont [ZapfDingbatsITC]
SetTypeSize 200
PenUp
SetPosition [69 -96]
PenDown
Left 90
GraphicsType [/]

I can then export the image as a TIFF image file from the File/Export/Graphics… menu item.
If I then drag the image into the Turtle array in the Preferences Window, I get this (Iʼve dragged

the size slider upwards to make the image bigger:

83

SetRGB 0 [0 0 0 0]
ClearScreen
SetFont [ZapfDingbatsITC]
SetTypeSize 200
PenUp
SetPosition [69 -96]
PenDown
Left 90
GraphicsType [/]

It looks like the background has been filled with black, but actually itʼs been filled with nothing.
Drawing the symbol in black on this background means we canʼt see it, but itʼs still there.

Exporting the image as a Tiff
again and viewing it in the finder,
we can see it is there.

The image file needs to
be dragged into the
Preferences window and
resized by using the size slider
as required. Itʼs then ready for
use.

84

Appendix D: Localisation
Localisation is the customisation of a programʼs interface to make it usable in languages other

than English.
ACSLogo, in common with most other Mac OS X applications, has always allowed a certain

amount of localisation by the knowledgeable user — menus and dialogs may have their constant
fields translated into a non-English language by editing the resources in the ACSLogo application
bundle.

Version 1.4b added to this by allowing translated commands to be used instead of the English
ones. For example, in a German translation, Vorwart might be used instead of Forward.

This means that ACSLogo can be localised for a new language without any program coding
changes.

There are three parts to localisation:
The GUI Localising the static text in menus, dialogs, etc. Also localising

dynamic text such as Hide/Show menus and Undo strings.
Logo Commands Translating the Logo commands into your chosen language.
Help and Tutorials Localising the help files and tutorials included in the help menu.

There's no compulsion to do all of these — you could for instance just do the GUI.

Prerequisites
You need to have the free OS X Developer Tools installed. These come on a separate disk

with the operating system, often called 'XCode Tools', but it varies with operating system release.

85

The Application Bundle
In the Finder, a program looks like a single file. In fact it is a ʻbundleʼ — a directory of files and

sub-directories including the runnable code and a number of resources. To see the structure, right-
click (control-click) on the ACSLogo icon and choose ʻShow Package contentsʼ:

In the resulting window, choose column view if youʼre not already in it. Everything weʼre
interested in is in the Resources folder. Here you can see some tiffs which are used for turtle

images and other images used in the program. Weʼre interested in the languages folders —
English.lproj, German.lproj, etc. English.lproj is the ʻoriginalʼ folder that holds all the English
language resources. You can see that some localisation has been done for French, German,
Italian, and Spanish. To add another language, you would create an additional folder for that
language.

Look in the English.lproj folder:

86

You can see the .nib files, which are the interface files representing menus, windows, etc. The
Logo commands folder contains the help files. defaultcommandmap.plist is used for mapping
commands.

Now have a look in the French.lproj folder:

There are fewer .nib files, because some windows did not need translating. There is no Logo
Commands folder, so Help has not been translated. commandmap.plist overrides
defaultcommandmap.plist in English.lproj. Localizable.strings is a list of English strings used in the
program and their French equivalents.

Localisation Tasks
You first need to create a .lproj folder for your chosen language. For example, to localise in

Dutch, you would create a folder called Dutch.lproj (if you look in the Resources folder for OS X
programs such as Textedit or iCal, you will see the sorts of names you can use). All the localisation
will be done in this folder.

The three localisation tasks are described in the following sections:
GUI Localisation
Logo Command Localisation
Help and Tutorial Localisation

GUI Localisation
The .nib File

We'll start with the ACSLogo menus. Copy MainMenu.nib from English.lproj into your
new .lproj folder. Double-click on the file to open it up. As long as youʼve installed the developer
tools correctly, thisʼll start up the Interface Builder program. The following discussion describes
Interface Builder in the Leopard release of Mac OSX. This is quite different from the Tiger version,
although the principles are the same. See the Interface Builder documentation for detailed
instructions on how to use the program.

87

When you double-click on the .nib file, Interface Builder starts up and opens a number of
windows. This is the main one:

It shows the objects in the nib file. Double-click the MainMenu instance — this will open the
MainMenu object (if itʼs not already open) and allow you to edit it. Click on each menu to show the
menu items under it.

To change the text, just double-click on it, and type in your translation:

Do this to the strings in all the menus.
Itʼs important to change the text and nothing else. Each of the menu items is connected to an

action in a program object. If you duplicate or cut and paste menu items, you will mess up these
connections.

The Prefs window is also in this nib file. Itʼs called Prefs in the main window. Double-click on it

88

to open it up.

In the same way as for the menus, you can double-click on the strings to edit them. You will
probably find that the size of the string has changed after translation, so you may need to resize the
string or move it to keep it aligned with other objects. If you select the string by clicking on it, you
can drag it or pull the handles to resize it.

To change the title of the window, select Tools/Attributes Inspector and key in the new title:

Save the nib file. You can now try out the program, and you should see that the menu and
window strings have changed.

If you have a look in the Window menu, you'll see that some of the menu items that you
translated are still in English:

89

This is because these items arenʼt picked up from the nib, theyʼre set dynamically — the menu
items have to change as windows are shown or hidden. There are a number of dynamic menu
titles and other strings throughout the program. This problem is addressed using a file called
Localizable.strings.

Localizable.strings
You can find the Localizable.strings file in any of the .lproj folders which have had some

localization done. Itʼs just a unicode text file, and you can open it in XCode. This is an excerpt from
the French one:

It consists of a number of lines of the form English string = translated string. So for instance, the
translation for Show Info is Afficher Info. To create your own translation, copy this file into your .lproj
folder and translate each string in the file. Back up the file before changing it — Iʼve had corruptions
when editing these files within XCode in the past.

Once you've saved the file, that's the interface translation finished. You can leave it there, or
you can carry on localising with Logo Command Localisation.

Logo Command Localisation
You can swap the set of English commands that come with ACSLogo for a set in your chosen

language. This has already been done for French and German. When itʼs been done, the user has
to choose localised commands using the Localisation pane in preferences:

"Hide Procedures" = "Masquer Procédures";

"Show Procedures" = "Afficher Procédures";

"Show Graphics" = "Afficher Graphique";

"Hide Graphics" = "Masquer Graphique";

90

Checking the switch will turn on localised commands if they exist (of course, the preferences
panel will appear in the current language).

You can see the full list of commands that need to be translated and their equivalents in
French and German in the command table. Localising the commands involves creating a list of
commands translated from the English ones. This creates a command mapping:

So the French command Avance and its short version AV need to translate to Forward, Cap
translates to Heading, etc. In fact, this kind of mapping even occurs for English — a command like
SetPenColour may have several variants, such as a short form (SetPC) and an alternative spelling
(SetPenColor). These three forms map to the core ACSLogo command, SetPenColour. You can
see this mapping in the defaultcommandmap.plist file which is in the English.lproj folder. Double-
click it to open it – it should open in the Property List Editor.

The Root of the file is a dictionary – a list of keys and values. the keys are the commands
which the user is allowed to type in ACSLogo; the values are the core ACSLogo commands. So the
keys can be anything — you could add a key (and hence a command) called Piffle — but its value
would have to be from the finite set of core ACSLogo commands. You can see from the start of the
dictionary that it is mostly commands mapping to an identical value — ABS to ABS, AND to AND,
etc., but down a few entries you can see that both ARCCOS and ARCCOSINE map to ARCCOS –
so the user can use both.

Further down the list, you can see that SETPENCOLOUR, SETPC, and SETPENCOLOR map
to SETPENCOLOUR.

In general, you will not be changing this list for localisation, because it relates to mapping
English commands. You need to change a file called commandmap.plist found in the
localised .lproj folders. Got the French.lproj and open the one found there.

You can see that itʼs exactly the same format as defaultcommandmap.plist, the difference

CAP

AVANCE FORWARD

AV

HEADING

CHAR CHAR

91

being that the keys are French commands. The English commands on the right are the same core

commands as in defaultcommandmap.plist.
To create your own commandmap.plist file, copy defaultcommandmap.plist into your .lproj

folder and rename it. Edit the file and overtype the keys with the translations into your own
language. You can add entries, but the Value on the right must be one of the core ACSLogo
commands from defaultcommandmap.plist. You can remove entries, but if nothing maps to one of
the core commands, it will be inaccessible to the user. Once youʼve saved the file, turned on
localisation in the ACSLogo preferences, and restarted ACSLogo, your new commands are ready
for use.

When you restart the program, check in the Console utility (found in Applications/Utilities) to
see if there are any error messages.

The first two messages show that the values used in the command map are not core
commands, so the mapping for just those commands has failed. The last two messages show that
the two core commands have not been mapped to at all, so entries should be added.

31/01/2009 18:48:25 ACSLogo[49747] ACSLogo: mapped command CLEARSCREEV not found
31/01/2009 18:48:25 ACSLogo[49747] ACSLogo: mapped command FONTFACES not found
31/01/2009 18:48:25 ACSLogo[49747] ACSLogo: command EOFP not mapped
31/01/2009 18:48:25 ACSLogo[49747] ACSLogo: command PATHLENGTH not mapped

92

Command Table
This is the list of English Commands with French and German equivalents.

English French German
ABS ABS BETRAG, ABS
AND ET ALLE
ARC ARC ARC
ARCCOS,ARCCOSINE ARCCOS, ARCCOSINUS ARCCOS, ARCCOSINE
ARCOSH ARCOSH ARCOSH
ARCSIN,ARCSINE ARCSIN, ARCSINUS ARCSIN, ARCSINUS
ARCTAN,ARCTANGENT ARCTANGENTE, ARCTAN ARCTAN, ARCTANGENS
ARSINH ARSINH ARSINH
ARTANH ARTANH ARTANH
ASCII ASCII ASCII
ATAN2 ATAN2 ATAN2
BACK,BK RE, RECULE RW, RÜCKWÄRTS
BACKGROUND,BG FOND, COULEURFOND, CF HINTERGRUND, HG
BUTFIRST,BF SP, SAUFPREMIER OE, OHNEERSTES
BUTLAST,BL SD, SAUFDERNIER OL, OHNELETZTES
BUTTON?, BUTTONP BOUTON? SCHALTFLÄCHE
CANVASSIZE LEINWANDGRÖSSE
CATCH ATTRAPE FANGEAB
CD CD CD
CHAR CHAR, CAR ZEICHEN
CLEAN NETTOIE LÖSCHE, NB, LB, NEUBILD

CLEARSCREEN, CS VE, EFFACEECRAN, VIDEECRAN, EE,
VIDE_ECRAN LÖSCHESCHIRM

CLOSEREADFILE FERMELECTURE LESEDATEISCHLIEßEN,
LESEDATEISCHLIESSEN

CLOSEWRITEFILE FERMEECRITURE SCHREIBDATEISCHLIESSEN,
SCHREIBDATEISCHLIEßEN

COLOURATPOINT, COLORATPOINT FARBEAMPUNKT
COS, COSINE COSINUS, COS COSINUS, COS
COSH COSH COSH
COUNT COMPTE ANZAHL, LÄNGE
CURRENTPATH TRACECOURANT AKTUELLERPFAD
DATE DATE DATUM
DEFINE DEFINIS, DEF DEF
DEFINE?, DEFINEP DEFP, DEFINIS?, DEFINISP DEF?
DIFFERENCE DIFFERENCE, DIFF DIFFERENZ
DIR DIR, CATALOG, CAT INHALT
DOT POINT PUNKT
DRAWIMAGE ZEICHNEBILD
EDIT EDITE, ED BEARBEITEN
EMPTY?, EMPTYP VIDE?, VIDEP LEER?
END FIN ENDE
EOF?, EOFP EOF? EOF?, DATEIENDE?
EQUAL?, EQUALP EGALE?, EGALEP, EGALP, EGAL GLEICH?
EXP EXP EXP
EXPORTEPS EXPORTEREPS EXPORTEPS
EXPORTPDF EXPORTERPDF EXPORTPDF
EXPORTTIFF EXPORTERTIFF EXPORTTIFF
FILL PEINS, REMPLIS FÜLLE
FILLCURRENTPATH REMPLITTRACECOURANT FÜLLEAKTUELLENPFAD
FILLIN REMPLISDEDANS FÜLLFARBE
FILLPATH PEINSCHEMIN FÜLLEPFAD
FIRST PREMIER ERSTES, ER
FIRSTPUT METSPREMIER, METSP ME, MITERSTEM
FONTFACE, FONT ASPECTPOLICE, POLICE SCHRIFTART, SCHRIFT
FONTFACES, FONTS ASPECTSPOLICES, POLICES SCHRIFTARTEN, SCHRIFTEN
FONTFAMILIES FAMILLESPOLICE SCHRIFTFAMILIEN
FONTFAMILY FAMILLEPOLICE SCHRIFTFAMILIE
FONTTRAITS STYLE SCHRIFTEIGENSCHAFTEN

93

FORWARD, FD AVANCE, AV VORWÄRTS, VW
FPRINT ECRITFICHIER, ECRITF DDRUCKE
FREADCHAR LITCARF, LITCARACTEREFICHIER DLIESBUCHSTABE
FREADCHARS LITCARACTERESFICHIER, LITCARSF DLIESBUCHSTABEN
FREADLIST LITLISTEF, LITLISTEFICHIER DLIESLISTE
FREADWORD LITMOTFICHIER, LITMOTF DLIESWORT
FSHOW AFFICHEF DZEIGE
FTYPE TAPEFICHIER, TAPEF DSCHREIBE

GETMOUSECHANGE SOURISCHANGE ERKENNEMAUSVERÄNDERUNG,
EMAUSV

GETMOUSECLICK SOURISCLIC ERKENNEMAUSKLICK, EMAUSK
GETMOUSEMOVED SOURISBOUGE ERKENNEMAUSBEWEGUNG, EMAUSB
GETPROP, GPROP RPROP NIMMEG, NIMMEIGENSCHAFT
GO VA GEHEZU

GRAPHICSTYPE, GRTYPE TYPEGR, TYPEGRAPHIQUE,
ECRISGRAPHIQUE, ECRISGR GRAFIKTYP

HEADING CAP KURS, WINKEL
HIDETURTLE, HT CACHETORTUE, CT VERSTECKIGEL, VI
HOME ORIGINE MITTE
IF SI WENN
INSTRUMENTS INSTRUMENTS INSTRUMENTE
INTEGER, INT ENTIER, ENT GANZZAHL
ITEM ELEMENT, ITEM ELEMENT, ELT
LABEL LABEL, ETIQUETTE IGELTEXT, IT
LAST DERNIER LETZTES, LZ, LE
LASTPUT, LPUT METSD, MD, METSDERNIER ML, MITLETZTEM
LEFT, LT GAUCHE, GA, TG, TOURNEGAUCHE LINKS, LI
LIST LISTE LISTE
LIST?, LISTP LISTE?, LISTEP LISTE?
LOCAL LOCALE LOKAL
LOG, LN LOG, LN LOG, LN
LOG10 LOG10 LOG10
LOWERCASE MINUSC, MINUSCULE KLEINBUCHSTABEN
MAKE RELIE SETZE
MEMBER?, MEMBERP MEMBRE?, MEMBREP MITGLIED?
MOUSE SOURIS MAUS
NAME?, NAMEP NOM? NAME?
NOT NON NICHT
NUMBERP, NUMBER? NOMBREP, NOMBRE? ZAHL?
OPENAPPEND OUVREAJOUT ÖFFNEZUMANHÄNGEN
OPENREAD OUVRELECTURE ÖFFNEZUMLESEN
OPENTEXTAPPEND OUVRETEXTEAJOUT ÖFFNETEXTANHÄNGEN
OPENTEXTREAD OUVRETEXTELECTURE ÖFFNETEXTLESEN
OPENTEXTWRITE OUVRETEXTEECRITURE ÖFFNETEXTSCHREIBEN
OPENWRITE OUVREECRITURE ÖFFNEZUMSCHREIBEN
OR OU EINES
OUTPUT, OP RET, SORTIE, RETOURNE, SOR RÜCKGABE
PATHBOUNDS LIMITESTRACE PFADGRENZE
PATHLENGTH LONGUEURCHEMIN PFADLÄNGE
PEN CRAYON, PLUME STIFT

PENCOLOUR, PENCOLOR, PC CPLUME, COULEURCRAYON,
CCRAYON, CC, COULEURPLUME FARBEZ

PENDOWN, PD BC, BAISSEPLUME, BAISSECRAYON SA, STIFTAB
PENUP, PU LEVECRAYON, LC SH, STIFTHOCH
PENWIDTH TAILLECRAYON, TAILLEPLUME STIFTBREITE
PI PI PI
PLAY JOUERINSTRUMENT, JOUER SPIELE
POSITION, POS POSITION, POS IGELORT, ORT
POWER PUISSANCE POTENZ
PRINT EC, ECRIS DRUCKEZEILE, DR, DZ, DRUCKE
PRODUCT PRODUIT PRODUKT
PROPLIST, PLIST LPROP EIGENSCHAFTENLISTE

PUTPROP, PPROP RAPE MITEG, GIBEG, MITEIGENSCHAFT,
GIBEIGENSCHAFT

PWD REPERTOIRE, REP ORDNER
QUOTIENT QUOTIENT QUOTIENT

94

RANDOM HASARD ZUFALL, ZZ
READCHAR, RC LITCAR, LITCARACTERE LIESBUCHSTABE, LBU
READCHARS, RCS LITCARACTERES, LITCARS LBUN, LIESBUCHSTABEN
READLIST, RL LITLISTE LIESLISTE, LL
READWORD, RW LITMOT LW, LIESWORT
REMAINDER RESTE REST
REMPROP EFPROP MERKEEIGENSCHAFT, MERKEG
REPEAT REPETE WH, WIEDERHOLE
REVERSEPATH INVERSETRACE PFADUMKEHREN
RGB RVB RGB
RIGHT, RT DR, DROITE RECHTS, RE
ROUND ARRONDI RUNDE
RUN EXEC, EXECUTE TUE
SAY PRONONCE SAGE
SENTENCE, SE PHRASE, PH SATZ
SETBACKGROUND, SETBG FIXECOULEURFOND, FCF AUFHINTERGRUND

SETCANVASSIZE CHANGETAILLECANEVAS LEINWANDGRÖSZESETZEN,
LGSETZEN

SETCLIPPATH SETZEAUSSCHNITTPFAD
SETFONTFACE, SETFONT FIXEASPECTPOLICE, FIXEPOLICE AUFSCHRIFTART, AUFSCHRIFT
SETFONTFAMILY FIXEFAMILLEPOLICE AUFSCHRIFTFAMILIE
SETFONTTRAITS FIXESTYLE AUFSCHRIFTEIGENSCHAFTEN
SETFULLSCREEN VOLLBILDANZEIGE
SETHEADING FC, FIXECAP AUFKURS, AK
SETLINECAP DEFINITBOUTLIGNE LINIENENDESETZEN, LESETZEN
SETLINEDASH POINTILLES AUFSTRICHLINIE
SETPEN FIXECRAYON, FIXEPLUME AUFSTIFT
SETPENCOLOUR, SETPENCOLOR,
SETPC FCC, FIXECOULEURCRAYON FARBE

SETPENWIDTH FTP, FIXETAILLEPLUME,
FIXETAILLECRAYON, FTC AUFSTIFTBREITE

SETPOSITION, SETPOS FIXEPOS, FIXEPOSITION, FPOS,
FPOSITION AUF, AUFXY

SETRGB FIXERVB AUGRGB
SETSHADOW FIXEOMBRE AUFSCHATTEN
SETTYPESIZE FIXETAILLE AUFSCHRIFTGRÖßE
SETVOICE FIXEVOICE AUFSTIMME
SETWRAP
SETX FIXEX AUFX
SETY FIXEY AUFY
SHOW MONTRE, AFFICHE ZEIGE, DZL, GIB
SHOWN?, SHOWNP ESTAFFICHE?, VISIBLE SICHTBAR?
SHOWTURTLE, ST MT, MONTRETORTUE ZGI, ZI, ZEIGIGEL
SINE, SIN SINUS, SIN SINUS
SINH SINH SINH
SNAP CAPTUREIMAGE, CAPTURE KNIPSE
SQRT RACINE QUADRATWURZEL, QW, WURZEL
STOP ARRETE HALT, STOPP
STROKECURRENTPATH DESSINETRACECOURANT AKTUELLERPFADUMRISS
STROKEPATH DESSINETRACE PFADUMRISS
SUM SOMME SUMME
TANGENT, TAN TAN, TANGENTE TAN, TANGENS
TANH TANH TANH
TEXT TEXTE TEXT
TEXTBOX ZONETEXTE TEXTBOX
THING CHOSE WERT
THROW RENVOIE WIRFZURÜCK
TIME HEURE ZEIT
TOWARDS VERS RICHTUNG, RI
TYPE TYPE SCHREIBE
UPPERCASE MAJUSCULE GROßBUCHSTABEN
VOICE VOIX STIMME
VOICES LISTEVOIX STIMMEN
WAIT ATTENDS WARTE
WAITFORSPEECH ATTENDSPAROLE WARTEAUFSPRACHE
WORD MOT WORT

95

WORD?, WORDP MOTP, MOT? WORT?
WRAP UMBRUCH
XPOS POSX, XPOS XORT
YPOS YPOS, POSY YORT

96

Help and Tutorial Localisation
There are a number of different bits of documentation that come with ACSLogo (including this

user guide). Two of them are integrated with the program — Tutorials and Help. To localise them,
you have to have some knowledge of how they fit into the program.

Tutorials
When you start up ACSLogo, you can see the tutorials at the bottom of the Help menu:

Itʼs easy to substitute your own tutorials.
When you download ACSLogo, you get an ACSLogo folder which contains the program itself

and some other things. One of the other things is a tutorials folder:

The tutorials are just files created in ACSLogo and saved in the tutorials folder. Their names
have been prefixed with numbers to make them appear in a particular order. You can add, replace,
rename, or change the files. The program will pick up the changes on restart.

Help
ACSLogo provides help using the standard Apple Help system. The help is contained in a set

of indexed HTML files. A few pages back we looked in the application bundle and saw in the
English.lproj folder a folder called Logo Commands.

The folder contains a folder called html which contains the bulk of the help HTML and image
files; Logo Commands idx which is an index into the HTML files used by the Apple help system; a
couple of other HTML files which are needed by the Help system for navigation.

97

If you look at one of the files in the html folder, you will see that it is valid html, with a number of
added tags:

There is one of these blocks for each command. The AppleSegStart, AppleSegDescription,
and AppleSegEnd tags, and the bits they enclose, are required by the Apple Help System for
indexing.

Once youʼve created your HTML, you need you need to run the folder through the Help
Indexer found in /Developer/Applications/Utilities. You need to give it the folder, which is the html
folder.

<!-- AppleSegStart="Back" -->

<!-- AppleSegDescription="Making the turtle move backwards." -->
<h2>Back, BK</h2>
<!-- AppleSegEnd -->
<table><tr><td width=30><td>
<P>Back <I>distance</I></P>
<P>Move the turtle backwards <I>distance</I> pixels. Draws a line if
the pen is down.</P>
<p>Example:
<table><tr><td width=30><td>
<p>Back 100</p>
</table>
<p>Opposite of Forward. See also
PenUp, PenDown</
a>
 </P>
</table>

98

Version 1.4g of ACSLogo introduces the ability to execute commands from another process via
Applescript.

Applescript in General
Applescript is a scripting language which enables you to control Applescript-enabled

applications such as iTunes and the Finder. An Applescript-enabled application declares an
interface of commands which can be called from a script.

To create, test, and run a script, use AppleScript Editor located in Applications/Utilities.
An empty window opens for you to type in your script. Here I've typed a script which asks the

Finder for the name of its front window.

Clicking the Run button compiles the script and runs it, returning any result in the bottom pane.
Note that I could also write this script as:

tell application "Finder"
tell front window

name
end tell

end tell

or as

name of front window of application "Finder"

Applescript and ACSLogo
Using Applescript, you can get ACSLogo to execute any command that can be typed in the

main window.
Say we want to draw a square using the Logo command:

Repeat 4 [Forward 100 Right 90]

Appendix E: Applescript

99

To execute this from Applescript:
tell application "ACSLogo"

tell document 1
execute command "Repeat 4 [Forward 100 Right 90]"

end tell
end tell

Note that the command has to go to a document within the application. Document 1 is the first
document in the list of documents held by the application.

The script returns straight away — it does not wait for the command to execute. Also, if the
command has a return value, this is not returned to the script, but is printed out in the Logo main
window in the usual way.

Running Scripts
Local Applescript

As you've seen, you can go into AppleScript Editor to run the script. You can also make the
script into an application so that you can double-click on it to run it — just do a Save As… and
choose a file type of Application.

Terminal
Another approach is to run the script from the command line using Terminal. This is done by

going into Terminal and invoking a program called osascript:

osascript scriptlogo.scpt

Where scriptlogo.scpt is the name of our script.
To add a bit of flexibility, itʼd be nice to pass the Logo command as a parameter to our script —

so the invocation of osascript is now:

osascript scriptlogo.scpt "Repeat 4 [Forward 100 Right 90]"

The AppleScript script has to be changed as well. It now becomes:

on run argv
tell application "ACSLogo"

tell document 1
execute command argv

end tell
end tell

end run

argv is the passed command.
In this way, you can control ACSLogo from another machine using Telnet to run the script.

100

Remote Applescript
You can run an Applescript on one machine to control a program on another machine.
On the machine which is being controlled (the remote machine), you need to check the

Remote Apple Events checkbox in the Sharing pane of System Preferences.
On the machine where you're doing the typing (the local machine), you need to set up the

applescript like this:

set remoteMac to "eppc://user:password@10.0.0.8"

using terms from application "ACSLogo"
tell application "ACSLogo" of machine remoteMac

quit
end tell

end using terms from

The variable remoteMac contains the required userid and password on the remote machine
and its address. You can use the IP address, as I've done here, or the name the machine is known
by on the network.

ACSLogo must also be installed on the local machine. This is so that Applescript can access
ACSLogoʼs Applescript dictionary locally in the using terms line.

In this example, ACSLogo is just being told to quit.

