
CUDA-Based Implementation of
GSLIB: The Geostatistical Software

Library
Daniel Baeza

dabaeza@alges.cl
Oscar Peredo
operedo@alges.cl

The Mining Process

EvaluationExploration Planning Operation

GSLIB: The Geostatistical Software Library!

GSLIB: The Geostatistical Software Library
• GSLIB is a software package composed by a set of utilities and

applications related with geostatistics

• Full implemented in Fortran 77/90

• Run in OSX, Linux and Windows

• Widely used for academics, researchers, engineers

GSLIB: Geostatistical Software Library and user's guide (1998)
Deutsch, Clayton V, Journel, André G

Variogram calculation with GSLIB
• gamv is the GSLIB variogram calculation method

• It’s a fundamental tool in geostatistics

• Allow to quantify the spatial variability of a variable

• Used in geostatistical estimation and simulation

• High computational cost
γ

Distance

Normal Scores Semivariogram Low Solubil

0. 100. 200. 300. 400. 500.
.00

.20

.40

.60

.80

1.00

1.20

γ

Distance

Normal Scores Semivariogram High Solubi

0. 100. 200. 300. 400. 500.
.00

.20

.40

.60

.80

1.00

1.20

Variogram calculation

x

z

y

Z(u)

Z(u + h)

b

a

a b-|| || = h 2!(h) = 1 ∑ [z(u) - z(u + h)]2

N(h)

more variability!(h)

less variability

h

Variogram computation!
Sequential & Parallel Implementations

2. GSLIB and gamv40

GSLIB is a geostatistical software package composed by a set of utilities and applications. They allow to summa-41

rize data with histograms and other graphics, calculate measures of spatial continuity, provide smooth least-squares-42

type maps, and perform stochastic spatial simulation. In its current version, GSLIB is fully implemented in Fortran43

77/90, and its source code can be downloaded for free from the internet. In can be compiled in Unix, Linux, Windows44

and Mac operating systems, and its versatility and speed have given it a wide dissemination between practitioners and45

academics around the world.46

47

Among its main applications, gam and gamv can calculate variogram values from structured and scattered 3D data48

points. In this work we are interested in gamv, being of general usage for any data set and also being of special49

interest in terms of execution speed (currently gamv is orders of magnitude slower that gam). Inside gamv it is possible50

to distinguish three subroutines. The first is related with data and parameters loading, the second is in charge of51

the main computation and the third stores the results in a output file. In the current implementation of gamv, the52

variogram is calculated measuring the spatial variability between all pairs of points separated by a lag vector distance.53

This spatial search has computational cost of order O(n2), where n is the number of data points. The sequential54

implementation of GSLIB gamv is shown in Algorithm 1. Lines 4 and 5 correspond to the loops of all pair of samples55

from the database and lines 6 to 12 correspond to statistics extraction from the selected pairs of points. Finally, in line56

13 is performed the calculation of variogram values from previously extracted statistics.57

Algorithm 1: gamv sequential implementation from GSLIB

Input:
• (VR,⌦): sample data values VR (m columns) defined in a 3D domain of coordinates ⌦

• nvar: number of variables (nvar m)

• nlag: number of lags

• h: lag separation distance

• ndir: number of directions

• h1, . . . ,hndir: directions

• ⌧1, . . . , ⌧ndir: geometrical tolerance parameters

• nvarg: number of variograms

• (ivtype1, ivtail1, ivhead1), . . . , (ivtypenvarg, ivtailnvarg, ivheadnvarg): variogram types

1 Read input parameter file;
2 Read sample data values file;
3 � zeros(nvar ⇥ nlag ⇥ ndir ⇥ nvarg);
4 for i 2 {1, . . . , |⌦|} do
5 for j 2 {i, . . . , |⌦|} do
6 for id 2 {1, . . . , ndir} do
7 for iv 2 {1, . . . , nvarg} do
8 for il 2 {1, . . . , nlag} do
9 pi = (xi, yi, zi) 2 ⌦;

10 p j = (x j, y j, z j) 2 ⌦;
11 if (pi, p j) satisfy tolerances ⌧id and ||pi � p j || ⇡ hid ⇥ il ⇥ h then
12 Save (VRi,ivheadiv or VRi,ivtailiv) and (VR j,ivheadiv or VR j,ivtailiv) according to variogram ivtypeiv into �;

13 � build variogram using statistics �Write � in the output file

Output: Output file with � values

58

Commonly gamv is not a costly part in the structural modeling process, in terms of computational time, but59

some processes may need to calculate a variogram many times in their execution. Examples of this processes can be60

automatic variogram fitting or inverse modeling of kernels fitting experimental variogram values. In these scenarios61

gamv execution time becomes a bottleneck. In this work we focused our e↵ort in translating the current gamv main62

3

Sequential implementation
Setup parameters

&
Load data

Main computation: Loop over pairs of points

Read computation results

2. GSLIB and gamv40

GSLIB is a geostatistical software package composed by a set of utilities and applications. They allow to summa-41

rize data with histograms and other graphics, calculate measures of spatial continuity, provide smooth least-squares-42

type maps, and perform stochastic spatial simulation. In its current version, GSLIB is fully implemented in Fortran43

77/90, and its source code can be downloaded for free from the internet. In can be compiled in Unix, Linux, Windows44

and Mac operating systems, and its versatility and speed have given it a wide dissemination between practitioners and45

academics around the world.46

47

Among its main applications, gam and gamv can calculate variogram values from structured and scattered 3D data48

points. In this work we are interested in gamv, being of general usage for any data set and also being of special49

interest in terms of execution speed (currently gamv is orders of magnitude slower that gam). Inside gamv it is possible50

to distinguish three subroutines. The first is related with data and parameters loading, the second is in charge of51

the main computation and the third stores the results in a output file. In the current implementation of gamv, the52

variogram is calculated measuring the spatial variability between all pairs of points separated by a lag vector distance.53

This spatial search has computational cost of order O(n2), where n is the number of data points. The sequential54

implementation of GSLIB gamv is shown in Algorithm 1. Lines 4 and 5 correspond to the loops of all pair of samples55

from the database and lines 6 to 12 correspond to statistics extraction from the selected pairs of points. Finally, in line56

13 is performed the calculation of variogram values from previously extracted statistics.57

Algorithm 1: gamv sequential implementation from GSLIB

Input:
• (VR,⌦): sample data values VR (m columns) defined in a 3D domain of coordinates ⌦

• nvar: number of variables (nvar m)

• nlag: number of lags

• h: lag separation distance

• ndir: number of directions

• h1, . . . ,hndir: directions

• ⌧1, . . . , ⌧ndir: geometrical tolerance parameters

• nvarg: number of variograms

• (ivtype1, ivtail1, ivhead1), . . . , (ivtypenvarg, ivtailnvarg, ivheadnvarg): variogram types

1 Read input parameter file;
2 Read sample data values file;
3 � zeros(nvar ⇥ nlag ⇥ ndir ⇥ nvarg);
4 for i 2 {1, . . . , |⌦|} do
5 for j 2 {i, . . . , |⌦|} do
6 for id 2 {1, . . . , ndir} do
7 for iv 2 {1, . . . , nvarg} do
8 for il 2 {1, . . . , nlag} do
9 pi = (xi, yi, zi) 2 ⌦;

10 p j = (x j, y j, z j) 2 ⌦;
11 if (pi, p j) satisfy tolerances ⌧id and ||pi � p j || ⇡ hid ⇥ il ⇥ h then
12 Save (VRi,ivheadiv or VRi,ivtailiv) and (VR j,ivheadiv or VR j,ivtailiv) according to variogram ivtypeiv into �;

13 � build variogram using statistics �Write � in the output file

Output: Output file with � values

58

Commonly gamv is not a costly part in the structural modeling process, in terms of computational time, but59

some processes may need to calculate a variogram many times in their execution. Examples of this processes can be60

automatic variogram fitting or inverse modeling of kernels fitting experimental variogram values. In these scenarios61

gamv execution time becomes a bottleneck. In this work we focused our e↵ort in translating the current gamv main62

3

Sequential implementation

2. GSLIB and gamv40

GSLIB is a geostatistical software package composed by a set of utilities and applications. They allow to summa-41

rize data with histograms and other graphics, calculate measures of spatial continuity, provide smooth least-squares-42

type maps, and perform stochastic spatial simulation. In its current version, GSLIB is fully implemented in Fortran43

77/90, and its source code can be downloaded for free from the internet. In can be compiled in Unix, Linux, Windows44

and Mac operating systems, and its versatility and speed have given it a wide dissemination between practitioners and45

academics around the world.46

47

Among its main applications, gam and gamv can calculate variogram values from structured and scattered 3D data48

points. In this work we are interested in gamv, being of general usage for any data set and also being of special49

interest in terms of execution speed (currently gamv is orders of magnitude slower that gam). Inside gamv it is possible50

to distinguish three subroutines. The first is related with data and parameters loading, the second is in charge of51

the main computation and the third stores the results in a output file. In the current implementation of gamv, the52

variogram is calculated measuring the spatial variability between all pairs of points separated by a lag vector distance.53

This spatial search has computational cost of order O(n2), where n is the number of data points. The sequential54

implementation of GSLIB gamv is shown in Algorithm 1. Lines 4 and 5 correspond to the loops of all pair of samples55

from the database and lines 6 to 12 correspond to statistics extraction from the selected pairs of points. Finally, in line56

13 is performed the calculation of variogram values from previously extracted statistics.57

Algorithm 1: gamv sequential implementation from GSLIB

Input:
• (VR,⌦): sample data values VR (m columns) defined in a 3D domain of coordinates ⌦

• nvar: number of variables (nvar m)

• nlag: number of lags

• h: lag separation distance

• ndir: number of directions

• h1, . . . ,hndir: directions

• ⌧1, . . . , ⌧ndir: geometrical tolerance parameters

• nvarg: number of variograms

• (ivtype1, ivtail1, ivhead1), . . . , (ivtypenvarg, ivtailnvarg, ivheadnvarg): variogram types

1 Read input parameter file;
2 Read sample data values file;
3 � zeros(nvar ⇥ nlag ⇥ ndir ⇥ nvarg);
4 for i 2 {1, . . . , |⌦|} do
5 for j 2 {i, . . . , |⌦|} do
6 for id 2 {1, . . . , ndir} do
7 for iv 2 {1, . . . , nvarg} do
8 for il 2 {1, . . . , nlag} do
9 pi = (xi, yi, zi) 2 ⌦;

10 p j = (x j, y j, z j) 2 ⌦;
11 if (pi, p j) satisfy tolerances ⌧id and ||pi � p j || ⇡ hid ⇥ il ⇥ h then
12 Save (VRi,ivheadiv or VRi,ivtailiv) and (VR j,ivheadiv or VR j,ivtailiv) according to variogram ivtypeiv into �;

13 � build variogram using statistics �Write � in the output file

Output: Output file with � values

58

Commonly gamv is not a costly part in the structural modeling process, in terms of computational time, but59

some processes may need to calculate a variogram many times in their execution. Examples of this processes can be60

automatic variogram fitting or inverse modeling of kernels fitting experimental variogram values. In these scenarios61

gamv execution time becomes a bottleneck. In this work we focused our e↵ort in translating the current gamv main62

3

Sequential implementation

2. GSLIB and gamv40

GSLIB is a geostatistical software package composed by a set of utilities and applications. They allow to summa-41

rize data with histograms and other graphics, calculate measures of spatial continuity, provide smooth least-squares-42

type maps, and perform stochastic spatial simulation. In its current version, GSLIB is fully implemented in Fortran43

77/90, and its source code can be downloaded for free from the internet. In can be compiled in Unix, Linux, Windows44

and Mac operating systems, and its versatility and speed have given it a wide dissemination between practitioners and45

academics around the world.46

47

Among its main applications, gam and gamv can calculate variogram values from structured and scattered 3D data48

points. In this work we are interested in gamv, being of general usage for any data set and also being of special49

interest in terms of execution speed (currently gamv is orders of magnitude slower that gam). Inside gamv it is possible50

to distinguish three subroutines. The first is related with data and parameters loading, the second is in charge of51

the main computation and the third stores the results in a output file. In the current implementation of gamv, the52

variogram is calculated measuring the spatial variability between all pairs of points separated by a lag vector distance.53

This spatial search has computational cost of order O(n2), where n is the number of data points. The sequential54

implementation of GSLIB gamv is shown in Algorithm 1. Lines 4 and 5 correspond to the loops of all pair of samples55

from the database and lines 6 to 12 correspond to statistics extraction from the selected pairs of points. Finally, in line56

13 is performed the calculation of variogram values from previously extracted statistics.57

Algorithm 1: gamv sequential implementation from GSLIB

Input:
• (VR,⌦): sample data values VR (m columns) defined in a 3D domain of coordinates ⌦

• nvar: number of variables (nvar m)

• nlag: number of lags

• h: lag separation distance

• ndir: number of directions

• h1, . . . ,hndir: directions

• ⌧1, . . . , ⌧ndir: geometrical tolerance parameters

• nvarg: number of variograms

• (ivtype1, ivtail1, ivhead1), . . . , (ivtypenvarg, ivtailnvarg, ivheadnvarg): variogram types

1 Read input parameter file;
2 Read sample data values file;
3 � zeros(nvar ⇥ nlag ⇥ ndir ⇥ nvarg);
4 for i 2 {1, . . . , |⌦|} do
5 for j 2 {i, . . . , |⌦|} do
6 for id 2 {1, . . . , ndir} do
7 for iv 2 {1, . . . , nvarg} do
8 for il 2 {1, . . . , nlag} do
9 pi = (xi, yi, zi) 2 ⌦;

10 p j = (x j, y j, z j) 2 ⌦;
11 if (pi, p j) satisfy tolerances ⌧id and ||pi � p j || ⇡ hid ⇥ il ⇥ h then
12 Save (VRi,ivheadiv or VRi,ivtailiv) and (VR j,ivheadiv or VR j,ivtailiv) according to variogram ivtypeiv into �;

13 � build variogram using statistics �Write � in the output file

Output: Output file with � values

58

Commonly gamv is not a costly part in the structural modeling process, in terms of computational time, but59

some processes may need to calculate a variogram many times in their execution. Examples of this processes can be60

automatic variogram fitting or inverse modeling of kernels fitting experimental variogram values. In these scenarios61

gamv execution time becomes a bottleneck. In this work we focused our e↵ort in translating the current gamv main62

3

Sequential implementation

Algorithm 2: extract statistics kernel()

Input:
• (VR,⌦): sample data values VR (m columns) defined in a 3D domain ⌦

• nvar: number of variables (nvar m)

• nlag: number of lags

• h: lag separation distance

• ndir: number of directions

• h1, . . . ,hndir: directions

• ⌧1, . . . , ⌧ndir: geometrical tolerances parameters

• nvarg: number of variogram

• (ivtype1, ivtail1, ivhead1), . . . , (ivtypenvarg, ivtailnvarg, ivheadnvarg): variograms types

1 idx = blockId.x*blockDim.x + threadId.x /* x threads coord in the GPU grid */

2 idy = blockId.y*blockDim.y + threadId.y /* y threads coord in the GPU grid */

3 Set and Initialize shared memory in the block
4 syncthreads()
5 iterx = idx

6 itery = idy

7 while (iterx & itery 2 ChunkPoints) /* Chunk points belongs thread (x,y) */

8 do
9 j = iterx +

|⌦|
2

10 i = itery

11 compute statistics(pi, p j)
12 store result in shared memory via atomic functions
13 if (iterx > itery) then
14 i = itery

15 j = iterx

16 compute statistics(pi, p j)
17 store result in shared memory via atomic functions
18 else
19 if (iterx == itery) then
20 i = itery

21 j = itery

22 compute statistics(pi, p j)
23 store result in shared memory via atomic functions

24 i = iterx +
|⌦|
2

25 j = itery +
|⌦|
2

26 compute statistics(pi, p j)
27 store result in shared memory via atomic functions

28 up date(iterx, itery)

29 syncthreads()
30 save Statistics values that are in shared memory into globa memory via atomic functions

Output: Array �

8

2. GSLIB and gamv40

GSLIB is a geostatistical software package composed by a set of utilities and applications. They allow to summa-41

rize data with histograms and other graphics, calculate measures of spatial continuity, provide smooth least-squares-42

type maps, and perform stochastic spatial simulation. In its current version, GSLIB is fully implemented in Fortran43

77/90, and its source code can be downloaded for free from the internet. In can be compiled in Unix, Linux, Windows44

and Mac operating systems, and its versatility and speed have given it a wide dissemination between practitioners and45

academics around the world.46

47

Among its main applications, gam and gamv can calculate variogram values from structured and scattered 3D data48

points. In this work we are interested in gamv, being of general usage for any data set and also being of special49

interest in terms of execution speed (currently gamv is orders of magnitude slower that gam). Inside gamv it is possible50

to distinguish three subroutines. The first is related with data and parameters loading, the second is in charge of51

the main computation and the third stores the results in a output file. In the current implementation of gamv, the52

variogram is calculated measuring the spatial variability between all pairs of points separated by a lag vector distance.53

This spatial search has computational cost of order O(n2), where n is the number of data points. The sequential54

implementation of GSLIB gamv is shown in Algorithm 1. Lines 4 and 5 correspond to the loops of all pair of samples55

from the database and lines 6 to 12 correspond to statistics extraction from the selected pairs of points. Finally, in line56

13 is performed the calculation of variogram values from previously extracted statistics.57

Algorithm 1: gamv sequential implementation from GSLIB

Input:
• (VR,⌦): sample data values VR (m columns) defined in a 3D domain of coordinates ⌦

• nvar: number of variables (nvar m)

• nlag: number of lags

• h: lag separation distance

• ndir: number of directions

• h1, . . . ,hndir: directions

• ⌧1, . . . , ⌧ndir: geometrical tolerance parameters

• nvarg: number of variograms

• (ivtype1, ivtail1, ivhead1), . . . , (ivtypenvarg, ivtailnvarg, ivheadnvarg): variogram types

1 Read input parameter file;
2 Read sample data values file;
3 � zeros(nvar ⇥ nlag ⇥ ndir ⇥ nvarg);
4 for i 2 {1, . . . , |⌦|} do
5 for j 2 {i, . . . , |⌦|} do
6 for id 2 {1, . . . , ndir} do
7 for iv 2 {1, . . . , nvarg} do
8 for il 2 {1, . . . , nlag} do
9 pi = (xi, yi, zi) 2 ⌦;

10 p j = (x j, y j, z j) 2 ⌦;
11 if (pi, p j) satisfy tolerances ⌧id and ||pi � p j || ⇡ hid ⇥ il ⇥ h then
12 Save (VRi,ivheadiv or VRi,ivtailiv) and (VR j,ivheadiv or VR j,ivtailiv) according to variogram ivtypeiv into �;

13 � build variogram using statistics �Write � in the output file

Output: Output file with � values

58

Commonly gamv is not a costly part in the structural modeling process, in terms of computational time, but59

some processes may need to calculate a variogram many times in their execution. Examples of this processes can be60

automatic variogram fitting or inverse modeling of kernels fitting experimental variogram values. In these scenarios61

gamv execution time becomes a bottleneck. In this work we focused our e↵ort in translating the current gamv main62

3

Sequential implementation

STEP 1 STEP 2 STEP 3 ... STEP N

Algorithm 2: extract statistics kernel()

Input:
• (VR,⌦): sample data values VR (m columns) defined in a 3D domain ⌦

• nvar: number of variables (nvar m)

• nlag: number of lags

• h: lag separation distance

• ndir: number of directions

• h1, . . . ,hndir: directions

• ⌧1, . . . , ⌧ndir: geometrical tolerances parameters

• nvarg: number of variogram

• (ivtype1, ivtail1, ivhead1), . . . , (ivtypenvarg, ivtailnvarg, ivheadnvarg): variograms types

1 idx = blockId.x*blockDim.x + threadId.x /* x threads coord in the GPU grid */

2 idy = blockId.y*blockDim.y + threadId.y /* y threads coord in the GPU grid */

3 Set and Initialize shared memory in the block
4 syncthreads()
5 iterx = idx

6 itery = idy

7 while (iterx & itery 2 ChunkPoints) /* Chunk points belongs thread (x,y) */

8 do
9 j = iterx +

|⌦|
2

10 i = itery

11 compute statistics(pi, p j)
12 store result in shared memory via atomic functions
13 if (iterx > itery) then
14 i = itery

15 j = iterx

16 compute statistics(pi, p j)
17 store result in shared memory via atomic functions
18 else
19 if (iterx == itery) then
20 i = itery

21 j = itery

22 compute statistics(pi, p j)
23 store result in shared memory via atomic functions

24 i = iterx +
|⌦|
2

25 j = itery +
|⌦|
2

26 compute statistics(pi, p j)
27 store result in shared memory via atomic functions

28 up date(iterx, itery)

29 syncthreads()
30 save Statistics values that are in shared memory into globa memory via atomic functions

Output: Array �

8

Parallel implementation

Algorithm 2: extract statistics kernel()

Input:
• (VR,⌦): sample data values VR (m columns) defined in a 3D domain ⌦

• nvar: number of variables (nvar m)

• nlag: number of lags

• h: lag separation distance

• ndir: number of directions

• h1, . . . ,hndir: directions

• ⌧1, . . . , ⌧ndir: geometrical tolerances parameters

• nvarg: number of variogram

• (ivtype1, ivtail1, ivhead1), . . . , (ivtypenvarg, ivtailnvarg, ivheadnvarg): variograms types

1 idx = blockId.x*blockDim.x + threadId.x /* x threads coord in the GPU grid */

2 idy = blockId.y*blockDim.y + threadId.y /* y threads coord in the GPU grid */

3 Set and Initialize shared memory in the block
4 syncthreads()
5 iterx = idx

6 itery = idy

7 while (iterx & itery 2 ChunkPoints) /* Chunk points belongs thread (x,y) */

8 do
9 j = iterx +

|⌦|
2

10 i = itery

11 compute statistics(pi, p j)
12 store result in shared memory via atomic functions
13 if (iterx > itery) then
14 i = itery

15 j = iterx

16 compute statistics(pi, p j)
17 store result in shared memory via atomic functions
18 else
19 if (iterx == itery) then
20 i = itery

21 j = itery

22 compute statistics(pi, p j)
23 store result in shared memory via atomic functions

24 i = iterx +
|⌦|
2

25 j = itery +
|⌦|
2

26 compute statistics(pi, p j)
27 store result in shared memory via atomic functions

28 up date(iterx, itery)

29 syncthreads()
30 save Statistics values that are in shared memory into globa memory via atomic functions

Output: Array �

8

GPU Kernel

Each thread compute
only a couple of correlation values

Parallel implementation

Algorithm 2: extract statistics kernel()

Input:
• (VR,⌦): sample data values VR (m columns) defined in a 3D domain ⌦

• nvar: number of variables (nvar m)

• nlag: number of lags

• h: lag separation distance

• ndir: number of directions

• h1, . . . ,hndir: directions

• ⌧1, . . . , ⌧ndir: geometrical tolerances parameters

• nvarg: number of variogram

• (ivtype1, ivtail1, ivhead1), . . . , (ivtypenvarg, ivtailnvarg, ivheadnvarg): variograms types

1 idx = blockId.x*blockDim.x + threadId.x /* x threads coord in the GPU grid */

2 idy = blockId.y*blockDim.y + threadId.y /* y threads coord in the GPU grid */

3 Set and Initialize shared memory in the block
4 syncthreads()
5 iterx = idx

6 itery = idy

7 while (iterx & itery 2 ChunkPoints) /* Chunk points belongs thread (x,y) */

8 do
9 j = iterx +

|⌦|
2

10 i = itery

11 compute statistics(pi, p j)
12 store result in shared memory via atomic functions
13 if (iterx > itery) then
14 i = itery

15 j = iterx

16 compute statistics(pi, p j)
17 store result in shared memory via atomic functions
18 else
19 if (iterx == itery) then
20 i = itery

21 j = itery

22 compute statistics(pi, p j)
23 store result in shared memory via atomic functions

24 i = iterx +
|⌦|
2

25 j = itery +
|⌦|
2

26 compute statistics(pi, p j)
27 store result in shared memory via atomic functions

28 up date(iterx, itery)

29 syncthreads()
30 save Statistics values that are in shared memory into globa memory via atomic functions

Output: Array �

8

0
2

0 1
2 3

0
1 3

3

0 1
2 3

0 2
1 3

0 1
2 3

0 1
2 3

0
2 3

0 1
2 3

0
1 3

STEP 1 STEP 2 STEP 3 STEP 4

Parallel implementation

Algorithm 2: extract statistics kernel()

Input:
• (VR,⌦): sample data values VR (m columns) defined in a 3D domain ⌦

• nvar: number of variables (nvar m)

• nlag: number of lags

• h: lag separation distance

• ndir: number of directions

• h1, . . . ,hndir: directions

• ⌧1, . . . , ⌧ndir: geometrical tolerances parameters

• nvarg: number of variogram

• (ivtype1, ivtail1, ivhead1), . . . , (ivtypenvarg, ivtailnvarg, ivheadnvarg): variograms types

1 idx = blockId.x*blockDim.x + threadId.x /* x threads coord in the GPU grid */

2 idy = blockId.y*blockDim.y + threadId.y /* y threads coord in the GPU grid */

3 Set and Initialize shared memory in the block
4 syncthreads()
5 iterx = idx

6 itery = idy

7 while (iterx & itery 2 ChunkPoints) /* Chunk points belongs thread (x,y) */

8 do
9 j = iterx +

|⌦|
2

10 i = itery

11 compute statistics(pi, p j)
12 store result in shared memory via atomic functions
13 if (iterx > itery) then
14 i = itery

15 j = iterx

16 compute statistics(pi, p j)
17 store result in shared memory via atomic functions
18 else
19 if (iterx == itery) then
20 i = itery

21 j = itery

22 compute statistics(pi, p j)
23 store result in shared memory via atomic functions

24 i = iterx +
|⌦|
2

25 j = itery +
|⌦|
2

26 compute statistics(pi, p j)
27 store result in shared memory via atomic functions

28 up date(iterx, itery)

29 syncthreads()
30 save Statistics values that are in shared memory into globa memory via atomic functions

Output: Array �

8

0
2

0 1
2 3

0
1 3

3

0 1
2 3

0 2
1 3

0 1
2 3

0 1
2 3

0
2 3

0 1
2 3

0
1 3

STEP 1 STEP 2 STEP 3 STEP 4

0
2

0 1
2 3

0
1 3

3

0 1
2 3

0 2
1 3

0 1
2 3

0 1
2 3

0
2 3

0 1
2 3

0
1 3

STEP 1 STEP 2 STEP 3 STEP 4

Parallel implementation

Algorithm 2: extract statistics kernel()

Input:
• (VR,⌦): sample data values VR (m columns) defined in a 3D domain ⌦

• nvar: number of variables (nvar m)

• nlag: number of lags

• h: lag separation distance

• ndir: number of directions

• h1, . . . ,hndir: directions

• ⌧1, . . . , ⌧ndir: geometrical tolerances parameters

• nvarg: number of variogram

• (ivtype1, ivtail1, ivhead1), . . . , (ivtypenvarg, ivtailnvarg, ivheadnvarg): variograms types

1 idx = blockId.x*blockDim.x + threadId.x /* x threads coord in the GPU grid */

2 idy = blockId.y*blockDim.y + threadId.y /* y threads coord in the GPU grid */

3 Set and Initialize shared memory in the block
4 syncthreads()
5 iterx = idx

6 itery = idy

7 while (iterx & itery 2 ChunkPoints) /* Chunk points belongs thread (x,y) */

8 do
9 j = iterx +

|⌦|
2

10 i = itery

11 compute statistics(pi, p j)
12 store result in shared memory via atomic functions
13 if (iterx > itery) then
14 i = itery

15 j = iterx

16 compute statistics(pi, p j)
17 store result in shared memory via atomic functions
18 else
19 if (iterx == itery) then
20 i = itery

21 j = itery

22 compute statistics(pi, p j)
23 store result in shared memory via atomic functions

24 i = iterx +
|⌦|
2

25 j = itery +
|⌦|
2

26 compute statistics(pi, p j)
27 store result in shared memory via atomic functions

28 up date(iterx, itery)

29 syncthreads()
30 save Statistics values that are in shared memory into globa memory via atomic functions

Output: Array �

8

0
2

0 1
2 3

0
1 3

3

0 1
2 3

0 2
1 3

0 1
2 3

0 1
2 3

0
2 3

0 1
2 3

0
1 3

STEP 1 STEP 2 STEP 3 STEP 4

0
2

0 1
2 3

0
1 3

3

0 1
2 3

0 2
1 3

0 1
2 3

0 1
2 3

0
2 3

0 1
2 3

0
1 3

STEP 1 STEP 2 STEP 3 STEP 4

Parallel implementation

Algorithm 2: extract statistics kernel()

Input:
• (VR,⌦): sample data values VR (m columns) defined in a 3D domain ⌦

• nvar: number of variables (nvar m)

• nlag: number of lags

• h: lag separation distance

• ndir: number of directions

• h1, . . . ,hndir: directions

• ⌧1, . . . , ⌧ndir: geometrical tolerances parameters

• nvarg: number of variogram

• (ivtype1, ivtail1, ivhead1), . . . , (ivtypenvarg, ivtailnvarg, ivheadnvarg): variograms types

1 idx = blockId.x*blockDim.x + threadId.x /* x threads coord in the GPU grid */

2 idy = blockId.y*blockDim.y + threadId.y /* y threads coord in the GPU grid */

3 Set and Initialize shared memory in the block
4 syncthreads()
5 iterx = idx

6 itery = idy

7 while (iterx & itery 2 ChunkPoints) /* Chunk points belongs thread (x,y) */

8 do
9 j = iterx +

|⌦|
2

10 i = itery

11 compute statistics(pi, p j)
12 store result in shared memory via atomic functions
13 if (iterx > itery) then
14 i = itery

15 j = iterx

16 compute statistics(pi, p j)
17 store result in shared memory via atomic functions
18 else
19 if (iterx == itery) then
20 i = itery

21 j = itery

22 compute statistics(pi, p j)
23 store result in shared memory via atomic functions

24 i = iterx +
|⌦|
2

25 j = itery +
|⌦|
2

26 compute statistics(pi, p j)
27 store result in shared memory via atomic functions

28 up date(iterx, itery)

29 syncthreads()
30 save Statistics values that are in shared memory into globa memory via atomic functions

Output: Array �

8

0
2

0 1
2 3

0
1 3

3

0 1
2 3

0 2
1 3

0 1
2 3

0 1
2 3

0
2 3

0 1
2 3

0
1 3

STEP 1 STEP 2 STEP 3 STEP 4

0
2

0 1
2 3

0
1 3

3

0 1
2 3

0 2
1 3

0 1
2 3

0 1
2 3

0
2 3

0 1
2 3

0
1 3

STEP 1 STEP 2 STEP 3 STEP 4

Parallel implementation

Algorithm 2: extract statistics kernel()

Input:
• (VR,⌦): sample data values VR (m columns) defined in a 3D domain ⌦

• nvar: number of variables (nvar m)

• nlag: number of lags

• h: lag separation distance

• ndir: number of directions

• h1, . . . ,hndir: directions

• ⌧1, . . . , ⌧ndir: geometrical tolerances parameters

• nvarg: number of variogram

• (ivtype1, ivtail1, ivhead1), . . . , (ivtypenvarg, ivtailnvarg, ivheadnvarg): variograms types

1 idx = blockId.x*blockDim.x + threadId.x /* x threads coord in the GPU grid */

2 idy = blockId.y*blockDim.y + threadId.y /* y threads coord in the GPU grid */

3 Set and Initialize shared memory in the block
4 syncthreads()
5 iterx = idx

6 itery = idy

7 while (iterx & itery 2 ChunkPoints) /* Chunk points belongs thread (x,y) */

8 do
9 j = iterx +

|⌦|
2

10 i = itery

11 compute statistics(pi, p j)
12 store result in shared memory via atomic functions
13 if (iterx > itery) then
14 i = itery

15 j = iterx

16 compute statistics(pi, p j)
17 store result in shared memory via atomic functions
18 else
19 if (iterx == itery) then
20 i = itery

21 j = itery

22 compute statistics(pi, p j)
23 store result in shared memory via atomic functions

24 i = iterx +
|⌦|
2

25 j = itery +
|⌦|
2

26 compute statistics(pi, p j)
27 store result in shared memory via atomic functions

28 up date(iterx, itery)

29 syncthreads()
30 save Statistics values that are in shared memory into globa memory via atomic functions

Output: Array �

8

0
2

0 1
2 3

0
1 3

3

0 1
2 3

0 2
1 3

0 1
2 3

0 1
2 3

0
2 3

0 1
2 3

0
1 3

STEP 1 STEP 2 STEP 3 STEP 4

Results!

γ

Distance

10x10x120 Omni-Directional Semivariogram

 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0
 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

Standard version

CUDA version

γ

Distance

510x510x1 Omni-Directional Semivariogram

 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
 0.0

 10.0

 20.0

 30.0

 40.0

 50.0

Standard version

CUDA version

Standard Version

Se
co

nd
s

0

575

1150

1725

2300

Number of points
5000 12000 65000 261000 500000 800000 1000000

2095

1330

518.69

143.2
9.524.680.8

- Intel Xeon E5
- 3.3 GHz CPU Frequency
- 10 MB cache
- 16GB RAM (1,6 MHz)
- 1 TB HDD
- Linux

Dell Precision T7600

CUDA version

Se
co

nd
s

0

12.5

25

37.5

50

Number of points
5000 12000 65000 261000 500000 800000 1000000

43.2

28.45

12.28

3.62
0.610.530.25

- 448 CUDA cores
- 1.15 GHz Frequency of CUDA cores
- 6GB RAM
- 114 GB/sec Memory bandwidth

Tesla c2075

CUDA version

Se
co

nd
s

0

12.5

25

37.5

50

Number of points
5000 12000 65000 261000 500000 800000 1000000

43.2

28.45

12.28

3.62
0.610.530.25

Standard Version

Se
co

nd
s

0

575

1150

1725

2300

Number of points
5000 12000 65000 261000 500000 800000 1000000

2095

1330

518.69

143.2
9.524.680.8

SpeedUp

Sp
ee

dU
p

0

13.75

27.5

41.25

55

Number of points

5000 12000 65000 261000 500000 800000 1000000

48.546.7

42.2
39.6

15.6

8.8

3.2

Sequential Parallel

43 sec34 min

1x 48x

CPU GPU

Current and future work!

• Finish the CUDA version of indicator simulation and gaussian
simulation of GSLIB

• Release the first GSLIB-CUDA version with these three methods

Thanks! Questions?!

