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Abstract. We consider the (finite-dimensional) restricted quantum group Uqs`(2) at q = i.
We show that U is`(2) does not allow for a universal R-matrix, even though U ⊗ V ∼= V ⊗ U
holds for all finite-dimensional representations U, V of U is`(2). We then give an explicit
coassociator Φ and a universal R-matrix R such that U is`(2) becomes a quasi-triangular
quasi-Hopf algebra.

Our construction is motivated by the two-dimensional chiral conformal field theory of
symplectic fermions with central charge c = −2. There, a braided monoidal category, SF ,
has been computed from the factorisation and monodromy properties of conformal blocks,
and we prove that Rep (U is`(2),Φ, R) is braided monoidally equivalent to SF .
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1. Introduction

Recall the definition of the restricted1 quantum group U qs`(2), with q = eiπ/p and p is
positive integer [CP, FGST1]. It has the generators E, F, and K±1 satisfying the standard
relations for the quantum s`(2),

(1) KEK−1 = q2E , KFK−1 = q−2F , [E,F] =
K− K−1

q− q−1
,

and the additional relations

(2) Ep = Fp = 0 , K2p = 1 .

The comultiplication, counit and antipode are given by

∆(E) = 1⊗ E + E⊗ K , ∆(F) = K−1 ⊗ F + F⊗ 1 , ∆(K) = K⊗ K .

ε(E) = 0 , ε(F) = 0 , ε(K) = 1 ,

S(E) = −EK−1 , S(F) = −KF , S(K) = K−1 .(3)

This defines a Hopf algebra of dimension dimU qs`(2) = 2p3.

There is a close relation [FGST2] between the category RepU qs`(2) of finite dimensional
representations of U qs`(2) and the category RepWp of modules of the W1,p triplet vertex op-
erator algebraWp [Ka1, GK, FHST, CF, AM] which occurs in logarithmic rational conformal
field theory. It is known that

• for p ≥ 2, RepU qs`(2) is equivalent to RepWp as a C-linear category [AM, NT],
• for p ≥ 3, RepU qs`(2) is not equivalent to RepWp as a braided tensor category, or
even only as a tensor category.

The second point follows as RepWp is braided [HLZ, HL, TW], but RepU qs`(2) is not
braidable since there are finite-dimensional U qs`(2)-representations U, V such that U ⊗ V is
not isomorphic to V ⊗ U [KS].

The situation for p = 2 is special: In this case q = i and for all finite-dimensional modules
U , V over U is`(2) we have isomorphisms U ⊗ V ∼= V ⊗ U , see [KS]. However, we will show
that it is not possible to chose a natural family of such isomorphisms that satisfy the hexagon
condition for the braiding:

1.1. Theorem. The category RepU is`(2) is not braidable, or, equivalently, U is`(2) has no
universal R-matrix.

In the following, we will use the term “R-matrix” instead of “universal R-matrix”.

By Theorem 1.1, the category RepU is`(2) cannot be tensor equivalent to RepW2, as the
latter is braided and the former not braidable. On the other hand, if we divide U is`(2) by the

1This algebra was named “restricted” in [FGST1] and this name has not to be confused with the “restricted
form” of Uqs`(2) – Lusztig’s integral form, see e.g. [CP].
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ideal generated by K2 − 1, there is an R-matrix [Lu, RT, KM] (see also [Kas, Thm. IX.7.1])
with the standard form

(4) R(st.) =
1

2

∑
m,n=0,1

(−1)mnKm ⊗ Kn
(
1⊗ 1 + 2iE⊗ F

)
.

In [LN], R-matrices of this form were classified in restricted-type quantum groups for finite-
dimensional simple complex Lie algebras with different quotients in the Cartan part. For
U is`(2), [LN] indeed find no solution, and our Theorem 1.1 extends this negative result from
R-matrices of the form (4) to all R-matrices.

The motivation behind the research presented in this paper was to find a suitable small
modification of U is`(2) to make its representations agree with those of W2 as a braided
tensor category. We find that it is possible to define a quasi-Hopf structure on U is`(2) (with
the same algebraic relations, coproduct, counit and antipode) that makes the algebra quasi-
triangular and extends the quasi-triangular Hopf-structure (4) from the quotient algebra. We
will now describe this quasi-triangular quasi-Hopf structure and then comment on the relation
to RepW2. Our conventions on quasi-Hopf algebras are collected in Appendix A.

The quasi-Hopf and quasi-triangular structure depend on a parameter

(5) β ∈ C which satisfies β4 = −1 .

Define the central idempotents

(6) e0 =
1

2
(1 + K2) , e1 =

1

2
(1− K2) .

The coassociator Φ, an invertible element in (U is`(2))⊗3, can be written component-wise as

Φ = e0 ⊗ e0 ⊗ e0(7)

+ e1 ⊗ e0 ⊗ e0 + Φ010e0 ⊗ e1 ⊗ e0 + e0 ⊗ e0 ⊗ e1

+ e1 ⊗ e1 ⊗ e0 + Φ101e1 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e1

+ Φ111e1 ⊗ e1 ⊗ e1 ,

where, in a PBW basis with order E,F,K,

Φ010 = 1⊗ 1⊗ 1− (1 + i)E⊗ K⊗ F + (1− i)FK⊗ K⊗ EK + 2EFK⊗ 1⊗ EFK ,

Φ101 = (i− 1)1⊗ F⊗ EK + 1⊗ K⊗ 1 + 21⊗ EF⊗ EFK− (1 + i)1⊗ EK⊗ F

− (1 + i)E⊗ FK⊗ 1 + 2iE⊗ EFK⊗ F + (1− i)FK⊗ E⊗ 1

− 2iFK⊗ EFK⊗ EK− 2EFK⊗ EF⊗ 1 ,

Φ111 = iβ2
{

(1 + i)1⊗ F⊗ EK− 1⊗ K⊗ 1− 21⊗ EF⊗ 1− 2i1⊗ EF⊗ EFK

+ (1 + i)1⊗ EK⊗ F− (1 + i)E⊗ 1⊗ F + (1 + i)E⊗ FK⊗ 1 + 2iE⊗ FK⊗ EFK

+ 2E⊗ EFK⊗ F− (1 + i)FK⊗ 1⊗ EK + (1 + i)FK⊗ E⊗ 1 + 2iFK⊗ E⊗ EFK

+ 2FK⊗ EFK⊗ EK + 2iEFK⊗ F⊗ EK + 2iEFK⊗ K⊗ EFK− 2iEFK⊗ EF⊗ 1
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+ 2iEFK⊗ EK⊗ F + 4EFK⊗ EF⊗ EFK
}
.

We take the same anti-automorphism S on U is`(2) as antipode (see (3)). We therefore have
the same dual objects, but the duality maps get modified by evaluation and coevaluation
elements α and β (which are part of the definition of a quasi-Hopf algebra). We choose

(8) α = 1 , β = e0 − 2iβ2Ce1 ,

where C := FE− i
4
(K− K−1) is the Casimir element.

Finally, we give an R-matrix which extends the quasi-triangular structure (4) from the
quotient by K2−1 to the whole quantum group. We define an invertible element in U is`(2)⊗
U is`(2) as

(9) R = R00e0 ⊗ e0 +R01e0 ⊗ e1 +R10e1 ⊗ e0 +R11e1 ⊗ e1,

with

R00 =
1

2

(
1⊗ 1 + 1⊗ K + K⊗ 1− K⊗ K

){
1⊗ 1 + 2iE⊗ F

}
,

R01 =
1

2

(
1⊗ 1− i1⊗ K + K⊗ 1 + iK⊗ K

){
1⊗ 1 + (1− i)FK⊗ EK

− (1− i)E⊗ F + (1 + i)EFK⊗ 1 + 2iEFK⊗ EFK
}
,

R10 =
1

2

(
1⊗ 1 + 1⊗ K− iK⊗ 1 + iK⊗ K

){
1⊗ K + (1− i)FK⊗ E

+ (1− i)E⊗ FK− (1− i)1⊗ EF− 2iEFK⊗ EF
}
,

R11 =
β

2

(
1⊗ 1− i1⊗ K− iK⊗ 1 + K⊗ K

){
−iK⊗ 1 + 2iEK⊗ F

+ (1− i)K⊗ EFK− (1 + i)EF⊗ 1− 2iEF⊗ EFK
}
.

We emphasise that R00 here equals the standard R-matrix R(st.) in (4).

1.2. Theorem. The Hopf algebra U is`(2) becomes a quasi-triangular quasi-Hopf algebra when
equipped with the coassociator Φ, the R-matrix R, the evaluation element α and the coevalu-
ation element β.

Here, Φ modifies the associator in the category RepU is`(2), R gives the braiding, and α
and β enter the definition of evaluation and coevaluation maps (see Appendix A and [CP,
Sec. 16.1]).

1.3. Corollary. The coassociator Φ defines a non-trivial cohomology class in the 3rd Hopf
algebra cohomology. In particular, our quasi-Hopf algebra (U is`(2),Φ) cannot be obtained as
a Drinfeld twist of the Hopf algebra U is`(2).

For details on Hopf algebra cohomology, or what is left thereof in the non-abelian case, we
refer to [Ma2, Sec. 2] – we will not make further use of it in this paper. The above corollary
is equivalent to the statement that the identity functor on RepU is`(2) cannot be endowed
with a monoidal structure such that it becomes a monoidal functor from Rep (U is`(2),Φ)
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– where the associator is given by acting with Φ – to RepU is`(2). This is an immediate
consequence of Theorems 1.1 and 1.2, as Rep (U is`(2),Φ) is braidable while RepU is`(2) is
not. Hence, there cannot be a monoidal equivalence at all, let alone a monoidal structure on
the identity functor.

Next we comment on the relation to the vertex operator algebra W2. At p = 2, the vertex
operator algebraWp has a symplectic fermion construction [Ka2, Ab] – a chiral rational loga-
rithmic conformal field theory at central charge c = −2. In [Ru], a braided tensor category SF
of the symplectic fermion fields was obtained from monodromy properties of conformal blocks
(we review the category SF in Section 3). In fact, due to a Z2-grading of the tensor product
one naturally obtains four different braided monoidal categories SF which we parametrise by
the parameter β from (5) already used for Φ and R. The category obtained from symplectic
fermion conformal blocks corresponds to β = e−

iπ
4 in this convention. Conjecturally, for this

value of β, SF is equivalent as a braided monoidal category to RepW2, but the latter has
not yet been computed explicitly.

1.4. Theorem. The categories Rep (U is`(2),Φ, R) and SF are equivalent as C-linear braided
monoidal categories for each β satisfying β4 = −1.

Theorem 1.4 is our main result. Under the conjectural braided monoidal equivalence
between SF andRepW2, Theorem 1.4 is an extension of the equivalence of the representation
categories of U is`(2) and of W2 as C-linear categories – established in [FGST2, NT] – to an
equivalence of braided monoidal categories. We also note that Theorem 1.4 is the first
example of a braided tensor equivalence between a braided tensor category obtained in a
logarithmic conformal field theory and the representation category of a quantum group.

For factorisable Hopf algebras one can obtain an SL(2,Z)-action on the centre of the Hopf
algebra [LM, Ly]. We observe in Appendix B that – using the same expressions (despite
working with a quasi-Hopf algebra) – our R-matrix defines an SL(2,Z)-action on the centre
of U is`(2), equivalent to the one given in [FGST1], which agrees with SL(2,Z)-action via
modular transformations on the space of torus conformal blocks of the W2-triplet algebra.

Let us give a brief outline of the proof of Theorem 1.4. The proof proceeds in three steps.
First, we define an auxiliary algebra S in Svect which has half the dimension of U is`(2). The
algebra S is equipped with a non-coassociative coproduct, resulting in a tensor product functor
on Rep S without – so far – an associator. We then establish the existence of multiplicative
equivalences

(10) SF D−−→ Rep S
G−−→ RepU is`(2) .

Recall that a functor F is called multiplicative2 if it is equipped with isomorphisms φU,V :

F (U ⊗ V ) → F (U) ⊗ F (V ), natural in U, V , and an isomorphism φ1 : F (1) → 1, on which
2 The definition is taken from [Ma1] (see also [Ma2, Sect. 9.4.1]). If the target of the functor is the category

of vector spaces, the name quasi-fibre functor is more common.
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no coherence conditions are imposed. A multiplicative functor is monoidal if φU,V and φ1

satisfy the hexagon and unit conditions. On general grounds, it follows that there exists a
quasi-bialgebra structure on U is`(2), such that the composite functor G ◦ D is monoidal (see
e.g. [Ma2, Sect. 9.4]).

In step 2, we compute Φ by first finding a coassociator Λ on S, turning it into a quasi-Hopf
algebra in Svect, such that D is monoidal. Then we transport Λ along G to RepU is`(2).
The reason to pass via the intermediate category Rep S was that both Rep S and SF are
defined over the underlying category Svect, while RepU is`(2) is defined over vect. Passing
via Rep S avoids excessive (and confusing) mixing of the tensor flips in Svect and vect.

Step 3 consists of transporting the braiding from SF to RepU is`(2) and reading off the R-
matrix which gives rise to this braiding. Since SF is a ribbon category, we can also transport
the ribbon twist to RepU is`(2) and we compute the corresponding ribbon element.

In presenting these steps in the body of the paper, we have opted for collecting the quasi-
Hopf structure of U is`(2) and of S in one section each, rather than postponing the definition
of the coassociator to a later section (which would be the chronological account). We believe
this improves the readability of the paper.

Starting from Theorem 1.4, there are a number of further directions which are worth
pursuing.

Firstly, it should be relatively straightforward to generalise the construction of this paper
to several pairs of symplectic fermions by taking appropriate products of the categories and
algebras involved, and we expect to make contact with the results in [Le] on quantum groups
at roots of unity of small order.

Secondly, and more difficult, from the relation to RepWp one may expect the existence
of a modified coproduct on U qs`(2) for q = eiπ/p (for the same algebra structure) such that
the tensor product becomes commutative and such that the structure of a quasi-triangular
quasi-Hopf algebra exists. Again, a generalisation of S may serve as a helpful intermediate
step. Our construction suggests that such an S should live in Zp-graded vector spaces with an
appropriate braiding. U qs`(2) is of dimension 2p3 and we would expect S to be of dimension
2p2. Of course, it would then be highly desirable to establish a braided monoidal equivalence
with RepWp, but associator and braiding in the latter category are not yet sufficiently
explicitly understood.

Thirdly, and less directly linked to the present paper, there are several constructions related
to conformal field theory which have been formulated for Hopf-algebras, and where one could
take the example from Theorem 1.4 as a starting point to look for a generalisation to quasi-
Hopf algebras. Of particular interest to us are the construction of [FSS], which provides
mapping class group invariants that can serve as bulk correlation functions in logarithmic
conformal field theory, and [BCGP], where a three-dimensional topological field theory is
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constructed starting from quantum sl(2) at a root of unity (but different from the U qs`(2)

used here).

The rest of the paper is organised as follows. In Section 2 we look at U is`(2) in more detail
and prove Theorem 1.1. In Section 3, we review the braided category SF of the symplectic
fermions CFT. In Section 4, we introduce the quasi-Hopf algebra S in Svect. Sections 5 and 6
detail the multiplicative functors G and D. In Section 7, we prove Theorems 1.2 and 1.4.

The proofs of Theorems 1.1, 1.2 and 1.4 rely heavily on computer algebra, specifically on
Mathematica implementations of the quasi-Hopf algebras. We indicate below which steps of
our proofs were done by computer algebra.
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The authors are also grateful to the organisers of the program “Modern trends in topological
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Notations: We use ‘·’ for the multiplication, e.g., a · b and the ‘.’ is for the action, i.e.,
a.u means that a acts on u. We also write a.u ⊗ v for (a.u) ⊗ v, and similarly for the right
component, in contrast to the action of a on u⊗ v denoted by a.(u⊗ v). Finally, to help the
reader to navigate through this long paper, we provide a partial list of notations:

• SF — the braided tensor category obtained from the field theory of symplectic
fermions, see (25) and (26),
• RepQ — the category of finite-dimensional representations of Q = U is`(2), see Sec-
tion 2.2,
• Rep S — the category of finite-dimensional super-vector space representations of S
defined in Section 4.1,
• Φ — the coassociator for Q given in (7) and (75),
• Λ — the coassociator for S in super-vector spaces, see (43),
• G — the monoidal functor from Rep S to RepQ defined in Section 5.1,
• ΓU,V — the family of isomorphisms (48) of the functor G,
• D — the monoidal functor from SF to Rep S defined in Section 6.1,
• ∆U,V — the family of isomorphisms (62)-(65) of the functor D.
• B — a projective S-module defined in (56).
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2. Details on the restricted quantum group at q = i

2.1. The restricted quantum group. We will only consider the case q = i (that is, p = 2)
for the restricted quantum group U qs`(2). We abbreviate

(11) Q = U is`(2) .

The defining relations specialise to

KEK−1 = −E , KFK−1 = −F , [E,F] =
K

i

1− K2

2
,(12)

E2 = F2 = 0 , K4 = 1 ,

and the Hopf algebra structure is the same as described in the Introduction, i.e., as for
generic q. The algebra has dimension dimQ = 16.

It turns out that the algebra Q is isomorphic to a direct sum of a Graßmann and a Clifford
algebra multiplied by a cyclic group of order two. Indeed, introduce the elements

(13) f+ = −iF , f− = EK−1 .

They satisfy fermionic-type relations

(14) {f+, f−} = e1 ,

where we introduce central idempotents

(15) e0 =
1

2
(1 + K2) , e1 =

1

2
(1− K2) .

These central idempotents ei correspond to a decomposition of Q into ideals Qi:

(16) Q = e0Q⊕ e1Q = Q0 ⊕ Q1 .

We then see that the ideal Q0 is generated by e0f
± satisfying the Graßmann algebra relations

and e0K is of order two. This is a non-semisimple subalgebra in Q. Conversely, the ideal Q1

is a semisimple subalgebra and is isomorphic to a direct sum of two Clifford algebras. We
note also the comultiplication formulas in the new notations

(17) ∆(f±) = f± ⊗ 1 + K−1 ⊗ f± .

The coproduct of ei is given by

(18) ∆(e0) = e0 ⊗ e0 + e1 ⊗ e1 , ∆(e1) = e0 ⊗ e1 + e1 ⊗ e0 .

2.2. The category RepQ. The C-linear category RepQ of finite-dimensional representa-
tions of Q decomposes as

(19) RepQ = RepQ0 ⊕RepQ1 ,

following the algebra decomposition (16). Using the coproduct formulas (18), we see that
the tensor product ⊗ functor respects the Z2-grading in RepQ, i.e., U ⊗ V ∈ RepQ0 for
(U, V ) ∈ RepQi×RepQi and U ⊗V ∈ RepQ1 for (U, V ) ∈ RepQi×RepQi+1, for i ∈ Z2.
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We begin by recalling results on simple Q-modules and then describe briefly their projective
covers [FGST2]. There are four simple modules X±s , with s = 1, 2, and they are highest-weight
Q-modules. The Q action is defined as follows: the modules X±1 are one-dimensional of weights
±1 with respect to K and with the zero action by E and F; the modules X±2 are two-dimensional
of the highest weights ±i, i.e., there exists a basis {v±0 , v±1 } in X±2 and the action

K.v±0 = ±iv±0 , E.v±0 = 0 , F.v±0 = v±1 ,

K.v±1 = ∓iv±1 , E.v±1 = ±v±0 , F.v±1 = 0 .

We note that the simple modules X±2 are projective and the X±1 have indecomposable but
reducible projective covers P±1 . The composition series of P±1 contains two copies each of X+

1

and X−1 , more details can be found in [FGST2]. P±1 are projective objects in RepQ0 while
the X±2 are in RepQ1.

2.3. Q is not quasi-triangular. It is known [KS] that the Hopf-algebra U qs`(2) at integer
p > 2 is not quasi-triangular because there are examples of finite-dimensional U qs`(2)-modules
U , V such that U ⊗ V 6∼= V ⊗ U . However, in the special case of p = 2 (i.e. q = i) the tensor
product satisfies U ⊗ V ∼= V ⊗U for all finite-dimensional U qs`(2)-modules. Nonetheless, we
show below that U qs`(2) is not quasi-triangular even at p = 2.

Instead of Theorem 1.1, we prove a more general result. The third group cohomology
H3(Z2,C∗) is isomorphic to Z2. Thus, up to coboundaries there are two normalised 3-cocycles
for the group Z2 (written additively) with values in C∗ (written multiplicatively), namely φ+1

and φ−1 with
φε(1, 1, 1) = ε, with ε = ±1 ,

and φε(i, j, k) = 1 if any of i, j, k is 0. Each such 3-cocycle gives an example of a quasi-
bialgebra structure on Q:

(20) Φε =
∑

i,j,k∈Z2

φε(i, j, k) ei ⊗ ej ⊗ ek = 1⊗ 1⊗ 1 + (ε− 1) e1 ⊗ e1 ⊗ e1 .

The following theorem implies Theorem 1.1:

2.4. Theorem. The quasi-bialgebra (Q,Φε) is not quasi-triangular.

Proof. Using computer algebra (we used Mathematica) one shows that the conditions in
Definition A.2 have no solution. Since the conditions are non-linear, let us nonetheless give
our procedure in some detail.

The R-matrix R is an element of Q ⊗ Q, a 256-dimensional vector space. The linear
conditions

R∆(K) = ∆op(K)R , R∆(E) = ∆op(E)R , R∆(F) = ∆op(F)R

(ε⊗ id)(R) = 1 = (id⊗ ε)(R) .
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have a 99-dimensional affine subspace of Q⊗Q as set of solutions. We insert this candidate-R-
matrix with 99 free parameters into the two hexagon conditions (97). The hexagon conditions
are quadratic and depend on Φε. While the details of the calculation differ slightly between
ε = +1 and ε = −1, the procedure is the same in both cases:

Looking at the resulting equations in Q⊗3 component by component reveals many linear
conditions on the 99 parameters. After imposing all linear conditions and quadratic conditions
of the form (parameter)2 = 0 (iteratively, as more appear in the process), one finds a quadratic
equation of the form (x− a)(y − b) = 0, where x, y are two of the remaining parameters and
a, b ∈ C are constants. One then checks that both possibilities, x = a or y = b, lead to
contradicting conditions in the remaining equations. �

If one complements the quasi-bialgebra (Q,Φε) by the evaluation and coevaluation elements
(see Proposition A.6)

(21) αε = 1 , βε = e0 + εe1 ,

one easily checks that one obtains a quasi-Hopf algebra.

3. The braided tensor category SF from symplectic fermions

We consider the chiral conformal field theory of one pair of symplectic fermions. Symplectic
fermions first appeared in [Ka2] and are by now the best investigated logarithmic conformal
field theory, see e.g. [GK, FHST, Ab, FGST2, AA, Ru].

In this section we summarise the construction of [DR, Ru] which uses the monodromy
properties and asymptotic behaviour of symplectic fermions conformal blocks to produce a
braided tensor category SF .

3.1. Mode algebra and representations. The mode algebra of a single pair of symplectic
fermions comes in two versions: twisted and untwisted. Both are Lie superalgebras with odd
generators χ±m, a central even generator K and anticommutation relations

(22) {χ+
m, χ

−
n } = mδm+n,0K .

For the untwisted mode algebra ĥ we have m,n ∈ Z, while for the twisted mode algebra ĥtw,
m,n ∈ Z + 1

2
.

The representations of ĥ we are interested in are in super-vector spaces, such that the
action of χ±m is by odd maps, while K acts as 1. Furthermore, the representations

- are bounded below in the sense that every vector is annihilated by each word in the
generators of sufficiently positive total mode number,

- have finite-dimensional highest weight space (the subspace annihilated by all χ±m with
m > 0).
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Denote this category by Rep fd
[,1(ĥ). The category Rep fd

[,1(ĥtw) is constructed analogously.

Write χ± := χ±0 for the zero modes in ĥ. They generate a four-dimensional Graßmann
algebra G,

(23) {χ+, χ−} = 0 .

We will work with the normalisation used in [DR] instead of that in [Ru] as it involves fewer
factors of πi. That is, we use the generators

(24) a1 := χ+ , a2 := πiχ− , {a1, a2} = 0 .

The Graßmann algebra G becomes a Hopf algebra in Svect by giving a1, a2 odd parity and
choosing ∆(aj) = aj ⊗ 1 + 1⊗ aj, S(aj) = −aj, for j = 1, 2.

It is shown in [Ru, Thms. 2.4& 2.8] that the functor associating to a representation in
Rep fd

[,1(ĥ) orRep fd
[,1(ĥtw) its highest weight space, provides equivalences of C-linear categories

as follows:

(25) Rep fd
[,1(ĥ)

∼−−→ Reps.v.G =: SF0 , Rep fd
[,1(ĥtw)

∼−−→ Svect =: SF1 .

Here, Reps.v.G denotes the category of finite-dimensional representations of G in super-vector
spaces, respecting the Z2-grading of G. We write

(26) SF := SF0 ⊕ SF1

for the category whose objects and morphism spaces are direct sums of those in SF0 and
SF1.

Next, we will use the chiral conformal field theory of symplectic fermions to endow SF
with a braided monoidal structure.

3.2. Tensor product. The tensor product X ∗ Y of two objects X, Y ∈ SF is defined as a
representing object for the functor which assigns to an object Z ∈ SF the space of vertex
operators from X and Y to Z – or rather between their preimages in Rep fd

[,1(ĥ(tw)) under the
equivalence in (25). For details we refer to [Ru, Sect. 3]. The result is [Ru, Thm. 3.13]:

(27) X ∗ Y =


X Y X ∗ Y
SF0 SF0 X ⊗Reps.v.G Y ∈ SF0

SF0 SF1 F (X)⊗Svect Y ∈ SF1

SF1 SF0 X ⊗Svect F (Y ) ∈ SF1

SF1 SF1 G⊗Svect X ⊗Svect Y ∈ SF0

Here, F : Reps.v.G→ Svect is the forgetful functor, and X⊗Reps.v.G Y stands for X⊗Svect Y

with G-action via the coproduct. On morphisms we simply have f ∗ g = f ⊗ g in all cases but
the last, where f ∗ g = idG ⊗ f ⊗ g.

We remark that in Svect, the action of G on X ⊗Svect Y involves the symmetric braiding

(28) τ s.v.
X,Y : X ⊗Svect Y −→ Y ⊗Svect X , τ s.v.

X,Y (x⊗ y) = (−1)|x||y|y ⊗ x ,
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of Svect (where x, y are homogeneous of Z2-degree |x|, |y|). Explicitly, the action map
ρX⊗Y : G⊗Svect X ⊗Svect Y → X ⊗Svect Y is given by

(29) ρX⊗Y = (ρX ⊗ ρY ) ◦ (idG ⊗ τ s.v.
G,X ⊗ idY ) ◦ (∆⊗ idX ⊗ idY ) ,

or, on elements,

(30) g.(x⊗ y) =
∑
(g)

(−1)|g
′′||x|(g′.x)⊗ (g′′.y) where ∆(g) =

∑
(g)

g′ ⊗ g′′ .

3.3. Associator. The associator of SF is computed in [Ru] via the usual procedure of com-
paring asymptotic behaviour of four-point conformal blocks. The four-point blocks in turn
are defined via appropriate compositions of two vertex operators. Here we just list the result
of this calculation.

Both, the associator and the braiding are expressed in terms of a constant β ∈ C satisfying
(5) and a copairing C on G given by [DR, Eqn. (5.19)]3

(31) C := a2 ⊗ a1 − a1 ⊗ a2 ∈ G⊗Svect G .

The associator is a natural family of isomorphisms

αSFX,Y,Z : X ∗ (Y ∗ Z)→ (X ∗ Y ) ∗ Z .

Its form depends on whether X, Y, Z are chosen from SF0 or SF1. There are eight pos-
sibilities, which we now list and then explain the notation (see [Ru, Thm. 6.2] and [DR,
Sect. 5.2&Thm. 2.5]):

X Y Z X ∗ (Y ∗ Z) (X ∗ Y ) ∗ Z αSFX,Y,Z : X ∗ (Y ∗ Z)→ (X ∗ Y ) ∗ Z

0 0 0 X ⊗ Y ⊗ Z X ⊗ Y ⊗ Z idX⊗Y⊗Z

0 0 1 X ⊗ Y ⊗ Z X ⊗ Y ⊗ Z idX⊗Y⊗Z

0 1 0 X ⊗ Y ⊗ Z X ⊗ Y ⊗ Z exp
(
C(13)

)
1 0 0 X ⊗ Y ⊗ Z X ⊗ Y ⊗ Z idX⊗Y⊗Z

0 1 1 X ⊗ G⊗ Y ⊗ Z G⊗X ⊗ Y ⊗ Z
[{

idG ⊗ (ρX ◦ (S ⊗ idX))
}

◦
{

∆⊗ idX
}
◦ τ s.v.

X,G

]
⊗ idY⊗Z

1 0 1 G⊗X ⊗ Y ⊗ Z G⊗X ⊗ Y ⊗ Z exp
(
C(13)

)
1 1 0 G⊗X ⊗ Y ⊗ Z G⊗X ⊗ Y ⊗ Z

{
idG⊗X⊗Y ⊗ ρZ

}
◦
{

idG ⊗ τ s.v.
G,X⊗Y ⊗ idZ

}
◦
{

∆⊗ idX⊗Y⊗Z
}

1 1 1 X ⊗ G⊗ Y ⊗ Z G⊗X ⊗ Y ⊗ Z
{
φ⊗ idX⊗Y⊗Z

}
◦
{
τ s.v.
X,G ⊗ idY⊗Z

}
3 To obtain the braided monoidal category of symplectic fermions as computed in [Ru], one has to set

β = e−πi/4. The relation to the copairing Ω = χ− ⊗ χ+ − χ+ ⊗ χ− used in [Ru] is C = πiΩ.
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If the sector ‘1’ occurs an even number of times, the triple tensor product lies in SF0 and
hence carries an action of G. The underlines indicate on which tensor factors G acts (action
on multiple factors is always via the coproduct). The action of C(13) is given by letting the
first tensor factor of C act on X and the second on Z (using the braiding of Svect to move
elements past each other). Explicitly,

(32) C(13)(x⊗ y ⊗ z) = (−1)|x|+|y|
(
a2.x⊗ y ⊗ a1.z − a1.x⊗ y ⊗ a2.z

)
,

for homogeneous x, y, z. The linear map φ : G→ G is given by

(33) φ(1) = β2 a1a2 , φ(a1) = β2 a1 , φ(a2) = β2 a2 , φ(a1a2) = −β2 1 .

3.4. Braiding. The braiding on SF is obtained from the monodromy properties of symplectic
fermion three-point blocks.4 The resulting family of natural isomorphism cX,Y is (see [Ru,
Thm. 6.4] and [DR, Sect. 5.2&Thm. 2.8]):

X Y cX,Y : X ∗ Y → Y ∗X
0 0 τ s.v.

X,Y ◦ exp(−C)

0 1 τ s.v.
X,Y ◦

{
exp
(

1
2
Ĉ
)
⊗ idY

}
1 0 τ s.v.

X,Y ◦
{

idX ⊗ exp
(

1
2
Ĉ
)}
◦ {idX ⊗ ωY }

1 1 β ·
(
idG ⊗ τ s.v.

X,Y

)
◦
{

exp
(
− 1

2
Ĉ
)
⊗ idX ⊗ ωY

}
Here, Ĉ is the multiplication of G applied to C, i.e. Ĉ = −2a1a2. For X ∈ Svect,

(34) ωX : X
∼−−→ X , ωX(x) = (−1)|x| x ,

denotes the parity involution on X. The family X 7→ ωX is a natural monoidal isomorphism
of the identity functor on Svect.

3.5. Ribbon twist. The braided monoidal structure on SF can be enhanced to a ribbon
structure, see [DR, Sect. 4]. Here we will only make use of the ribbon twist isomorphisms θX ,
which are given by [Ru, Rem. 6.5]:

X θX : X → X

0 exp(−Ĉ)

1 β−1 · ωX

The twist isomorphisms satisfy

(35) θX∗Y = (θX ⊗ θY ) ◦ cY,X ◦ cX,Y .

4 Actually, this initially only produces a braiding in the sense of crossed Z2-categories [Ru, Sect. 4]. However,
with the help of the parity involution on Svect, this can be turned into the ‘proper’ braiding as stated in
Section 3.4, see [Ru, Sect. 6.3].
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For symplectic fermions, the ribbon twist acts by exp(−2πiL0) on the parity even sub-
space of a given representation. The even subspaces of the four irreducibles in Rep fd

[,1(ĥ) ⊕
Rep fd

[,1(ĥtw) have lowest L0 eigenvalues h as follows:

untwisted twisted
h = 0, h = 1 h = −1

8
, h = 3

8

This agrees with the expression in SF given above for β = e−πi/4, as it should.

The subcategory SF0 of SF is closed under the tensor product ∗. When restricted to SF0,
the associator in Section 3.3 becomes trivial. The braiding cU,V restricted to SF0 can be
described by an R-matrix,

(36) cU,V = τ s.v.
U,V ◦ R ,

with R = exp(−C) = 1−C + 1
2
C2 (since C3 = 0). When evaluating R on elements, one has

to keep track of the parity signs which arise in C2 and when acting on u⊗ v,

(37) R(u⊗ v) = u⊗ v − (−1)|u|a2.u⊗ a1.v + (−1)|u|a1.u⊗ a2.v − a1a2.u⊗ a1a2.v .

The ribbon twist on SF0 is given by θU(u) = u+ 2a1a2.u.

4. A quasi-Hopf algebra in Svect

Here we will introduce the quasi-Hopf algebra S in Svect, which in Section 7 will serve
as an intermediate step when transporting the monoidal structure, braiding and the ribbon
twist from SF to RepQ. One can try to skip this step (and we did try), but the different
braidings in vect and Svect become cumbersome to deal with.

We will begin by collecting the various structures on S in the next definition and then
will provide the proofs for the claims made in the process. The definition of the coproduct
and coassociator of S will seem opaque and ad hoc. They result from considering C-linear
equivalences SF → Rep S andRep S→ RepQ and turning them into monoidal equivalences.
We will elaborate on this in Remark 5.6 and Section 7.2 below.

4.1. Definition. S is the eight-dimensional associative algebra over C generated by x± and L

with the defining relations

(38) x±L = Lx± , {x+, x−} =
1

2
(1− L) , (x±)2 = 0 , L2 = 1 .

The Z2-grading is such that x± have odd degree and L has even degree. Define the central
idempotents

(39) e0 =
1

2
(1 + L) , e1 =

1

2
(1− L) .

They give a decomposition

(40) S = S0 ⊕ S1 , where S0 := e0S , S1 := e1S ,
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of S into a four-dimensional Graßmann algebra S0 and a four-dimensional Clifford algebra S1.

The algebra S is equipped with a non-coassociative coproduct and a counit, namely with
the algebra maps ∆S : S→ S⊗ S and ε : S→ C given by

∆S(x±) = x± ⊗ 1 + (e0 − ie1)⊗ x± ± ie1 ⊗ e1(x+ − x−) , ε(x±) = 0 ,(41)

∆S(L) = L⊗ L , ε(L) = 1 .

We define the antipode S : S→ S to be the algebra anti-automorphism determined by

(42) S(x±) = −x±(e0 − ie1), S(L) = L .

Note that an anti-automorphism in Svect satisfies S(ab) = (−1)|a||b|S(b)S(a) for all homoge-
neous a, b ∈ S.

The coassociator Λ ∈ S⊗3 depends on a complex parameter β satisfying β4 = −1, cf. (5).
It is given by

Λ = e0 ⊗ e0 ⊗ e0(43)

+ e1 ⊗ e0 ⊗ e0 + Λ010e0 ⊗ e1 ⊗ e0 + e0 ⊗ e0 ⊗ e1

+ Λ110e1 ⊗ e1 ⊗ e0 + Λ101e1 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e1

+ Λ111e1 ⊗ e1 ⊗ e1,

where

Λ010 = 1⊗ 1⊗ 1 + (1 + i)x− ⊗ 1⊗ x+ − (1− i)x+ ⊗ 1⊗ x− − 2x+x− ⊗ 1⊗ x+x−,

Λ110 = 1⊗ 1⊗ 1− i1⊗ (x+ + x−)⊗ (x+ + x−),

Λ101 = 1⊗ 1⊗ 1 + i1⊗ (x+ + ix−)⊗ (x+ + ix−) + (1− i)(x+ − x−)⊗ x+x− ⊗ (ix+ − x−)

+ (1 + i)x− ⊗ x+ ⊗ 1− (1− i)x+ ⊗ x− ⊗ 1 + (1 + i)1⊗ x+x− ⊗ 1− 2x+x− ⊗ x+x− ⊗ 1,

Λ111 = β2
{

(i− 1)1⊗ 1⊗ 1 + (1− i)1⊗ 1⊗ x+x− + (1 + 2i)1⊗ x− ⊗ x− + 1⊗ x− ⊗ x+

+ 1⊗ x+ ⊗ x− + 1⊗ x+ ⊗ x+ + (1− i)1⊗ x+x− ⊗ 1− (2− 2i)1⊗ x+x− ⊗ x+x−

− (1− i)x− ⊗ 1⊗ x− + (1 + i)x− ⊗ 1⊗ x+ − (1− i)x− ⊗ x− ⊗ x+x−

+ (1 + i)x− ⊗ x+ ⊗ x+x− + (1− i)x− ⊗ x+x− ⊗ x− − (1 + i)x− ⊗ x+x− ⊗ x+

+ (1− i)x+ ⊗ x− ⊗ 1− (1− i)x+ ⊗ x− ⊗ x+x− − (1 + i)x+ ⊗ x+ ⊗ 1

+ (1 + i)x+ ⊗ x+ ⊗ x+x− − (1− i)x+ ⊗ x+x− ⊗ x− + (1 + i)x+ ⊗ x+x− ⊗ x+

+ 2x+x− ⊗ 1⊗ 1− 2x+x− ⊗ 1⊗ x+x− − 2ix+x− ⊗ x− ⊗ x− − 2ix+x− ⊗ x+ ⊗ x+

− 2x+x− ⊗ x+x− ⊗ 1 + 4x+x− ⊗ x+x− ⊗ x+x−
}
.

We fix the evaluation element α and coevaluation element β as

(44) α = e0 + e1(x+ + x−) , β = e0 + β2e1(x+ − x−) .

4.2. Proposition. The data (S, ·,1,∆S, ε,Λ, S,α,β) is a quasi-Hopf algebra in Svect.
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We have actually two different quasi-Hopf structures on S depending on β2 ∈ {±i}. As for
SF , we will not indicate the β dependence in the notation for S.

The proof of Proposition 4.2 is given in the next two lemmas.

4.3. Lemma. ε : S → C1|0 and ∆S : S → S ⊗Svect S are algebra homomorphisms; S : S → S

is an algebra anti-homomorphism.

Proof. For ε the statement is clear. For ∆S a straightforward calculation in Svect shows that
∆S(x±)∆S(x±) = 0, ∆S(L)∆S(x±) = ∆S(x±)∆S(L), and ∆S(x+)∆S(x−) + ∆S(x−)∆S(x+) =

∆S(e1). For S one needs to check (note the signs in the last relation) S(x±)S(x±) = 0,
S(L)S(x±) = S(x±)S(L), and −S(x+)S(x−) − S(x−)S(x+) = S(e1), which is again straight-
forward. �

However, ∆S is not coassociative, since, e.g.,(
(∆S ⊗ id) ◦∆S

)
(x+ + x−)−

(
(id⊗∆S) ◦∆S

)
(x+ + x−)

= 1
2
(1− L)⊗ (1− L)⊗ (x+ + x−) 6= 0 .

4.4. Lemma. Conditions (92)–(95) in Definition A.1 hold; conditions (99) and (100) in
Definition A.4 hold.

Proof. The conditions have been checked by computer algebra. (The conditions not involving
Λ can also be checked by hand, it is just Λ that is impractical to work with.) �

According to Definitions A.1 and A.4, the above two lemmas establish that S is a quasi-
Hopf algebra.

5. An equivalence from Rep S to RepQ

We denote by Rep S the category of finite-dimensional super-vector space representations
of S. According to the decomposition (40), we have the decomposition

(45) Rep S = Rep S0 ⊕Rep S1

of the representation category.

By Lemma 4.3, the map ∆S defines a tensor product on Rep S. Since the coproduct ∆S

applied to e0, e1 takes the form (18), the decomposition (45) is compatible with the tensor
product.

5.1. The functor G. Define the C-linear functor G : Rep S→ RepQ as follows. For a given
U ∈ Rep S, let G(U) be the Q-module with underlying vector space U , and with Q-action
given by, for u ∈ U ,

K.u := z.ωU(u) = ωU(z.u) , where z = e0 + ie1 ,(46)

f±.u := x±.u .
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Here, ωU is the parity involution on the super-vector space U . It is easy to see that (46)
indeed gives a Q-module structure on U . In particular, K.(K.u) = z.ωU

(
z.ωU(u)

)
= L.u,

where we used z2 = L. So, K2 acts as L and ei ∈ Q (i = 0, 1) acts as ei ∈ S, making the
notation consistent. On an S-module map f : U → V we set G(f) = f .

5.2. Proposition. The functor G is an equivalence of C-linear categories.

Proof. We will construct a functor F : RepQ → Rep S which is inverse to G. We start by
giving a Z2-grading on Q-modules. Namely, inverting the relation in (46) we introduce the
involution ωV on an object V ∈ RepQ as

(47) ωV (v) := (e0 − ie1)K.v , v ∈ V ,

where e0, e1 refer to (15). It is easy to check that (ωV )2 is the identity. The parity |v| of an
eigenvector v of ωV is determined by the eigenvalue as ωV (v) = (−1)|v|v. In particular, the
generators f± of Q change the parity by one.5 We have thus embedded RepQ into Svect.

Given V ∈ RepQ, the S-module F(V ) has V as underlying super-vector space with the
Z2-grading defined by the above involution ωV . The action of L on F(V ) is given by the
action of e0 − e1 ∈ Q, while the action of x± is given by the action of f±. On morphisms f
in RepQ we set F(f) = f .

It is an easy check that the compositions F ◦ G and G ◦ F are actually equal (and not just
naturally isomorphic) to the identity functors 1RepS and 1RepQ, respectively. Thus, the two
categories are even isomorphic. �

5.3. G as multiplicative functor. To make G multiplicative, we need to find a family of
isomorphisms

(48) ΓU,V : G(U ⊗RepS V )→ G(U)⊗RepQ G(V ) ,

natural in U and V . We claim that

(49) ΓU,V (u⊗ v) := u⊗ v + e1.u⊗ (ξ − 1)e1.v , where ξ = x+ + x− ,

does the job. Invertibility is easy to see since (ΓU,V )2 = idU⊗V , which is an immediate
consequence of ξ2 = e1. Naturality is also clear. It remains to show:

5.4. Lemma. ΓU,V is an intertwiner of Q-modules.

Proof. We need to show that for all a ∈ Q, u ∈ U , v ∈ V we have

(50) ΓU,V (a.(u⊗ v)) = a.ΓU,V (u⊗ v) .

5 It is important to remark that Q is not an algebra in Svect. Firstly, the identity 1 of Q is not homogeneous
(and so in particular not parity even): ωQ(1) = (e0 − ie1)K 6= ±(e0 + e1). Secondly, the product does not
respect parity (and so is not a morphism in Svect). For example, for a = b = 1 we have ω(ab) 6= ω(a)ω(b).
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It is enough to verify this on the generators K, f±. For example, for a = f+, the two sides of
the above identity are, with z̄ = e0 − ie1,

ΓU,V
(
f+.(u⊗ v)

)
= ΓU,V

(
x+.(u⊗ v)

)
(51)

= ΓU,V
(
x+.u⊗ v + (−1)|u|z̄.u⊗ x+.v

+ (−1)|u|ie1.u⊗ e1(x+ − x−).v
)
,

f+.ΓU,V
(
u⊗ v

)
= (f+ ⊗ 1 + K−1 ⊗ f+).(u⊗ v + e1.u⊗ (ξ − 1)e1.v)

= x+.u⊗ v + x+e1.u⊗ (ξ − 1)e1.v

+ (−1)|u|z̄.u⊗ x+.v + (−1)|u|z̄e1.u⊗ x+(ξ − 1)e1.v) ,

which can be checked to agree. The other cases are equally straightforward. �

Altogether, we have shown:

5.5. Proposition. With the isomorphisms ΓU,V as in (49), the functor G : Rep S→ RepQ

is multiplicative.

We conclude this section with a remark explaining how one may arrive at the expression
(49) for ΓU,V , and how it leads to the coproduct ∆S defined in the previous section.

5.6.Remark. Suppose we did not already know the coproduct ∆S and the isomorphisms ΓU,V .
To find them, we start from the assumption that L is group-like, ∆S(L) = L⊗L. Equivalently,
we could assume that the tensor product on Rep S determined by ∆S is compatible with the
Z2-grading of Rep S in (45).

Given the definition of the functor G, we can now compare the K-action on G(U ⊗Svect V )

and G(U) ⊗RepQ G(V ), as defined in (46). This is done in the following table, where it is
indicated whether U, V are taken from Rep S0 or Rep S1, and where u ∈ U , v ∈ V :

U V K.u K.v K.(u⊗ v)

0 0 ωU(u) ωV (v) ωU⊗V (u⊗ v)

0 1 ωU(u) iωV (v) iωU⊗V (u⊗ v)

1 0 iωU(u) ωV (v) iωU⊗V (u⊗ v)

1 1 iωU(u) iωV (v) ωU⊗V (u⊗ v)

Since we need ΓU,V (K.(u⊗v)) = K.ΓU,V (u⊗v) (and since ωU⊗V (u⊗v) = ωU(u)⊗ωV (v) and K is
group-like in Q), we see that in all sectors but the last, we can simply take ΓU,V (u⊗v) = u⊗v.
In the 11-sector we need an extra minus sign, which suggests to take ΓU,V to be the action
of an odd element. One possibility (amongst many) is to choose u ⊗ v 7→ u ⊗ ξ.v with ξ as
in (49). This map is invertible since ξ2 = e1 is the identity in S1.
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Now that we have our ansatz for ΓU,V , we can ask for a coproduct on S such that ΓU,V is a Q-
module intertwiner. That is, we require commutativity of the diagram, for all U, V ∈ Rep S,

(52) Q⊗
(
U ⊗Rep S V

)
ρS

��

id⊗ΓU,V // Q⊗
(
U ⊗RepQ V

)
ρQ

��
U ⊗Rep S V

ΓU,V // U ⊗RepQ V

where ρS and ρQ are the action maps that use the coproducts ∆S and ∆, respectively.
Note that the parity has to be taken into account while applying ρS: (a1 ⊗ a2).(u ⊗ v) =

(−1)|a2||u|a1.u ⊗ a2.v, for homogeneous a1, a2 ∈ S and u ∈ U , v ∈ V , while no parity
signs appear for ρQ. The diagram states that for each a ∈ Q, u ∈ U , v ∈ V we require
ΓU,V (a.(u⊗ v)) = a.ΓU,V (u⊗ v). For a = K2 (defining ∆S(L)), this holds by construction. For
a = f±, one can choose U = V = S, u = v = 1 and use (ΓU,V )2 = id to get

(53) ∆S(x±) = ΓS,S

(
∆(f±) · ΓS,S(1⊗ 1)

)
,

which reduces to (41).

6. An equivalence from SF to Rep S

6.1. The functor D. We begin with defining an equivalence of C-linear abelian categories
D : SF → Rep S. Recall the decomposition SF = SF0 ⊕ SF1 from (26) and Rep S =

Rep S0 ⊕Rep S1 from (45). The functor D is defined differently in the two sectors. On SF0

we take

(54) D0 : SF0 → Rep S0 , D0(U) = U where x+.u = a1.u , x
−.u = a2.u (u ∈ U) ,

and D0(f) = f on morphisms. Here we use the isomorphism x+ 7→ a1, x− 7→ a2 of the Lie
super algebras S0 and G, see Section 3.

Define the non-central idempotent

(55) b := x−x+e1 ∈ S1 .

It generates a projective S1-submodule B ⊂ S1:

(56) B := Sb = S1b = C x−x+e1 ⊕ C x+e1 .

We note that the image G(B) is the projective Q-module X+
2 defined in Section 2.2. The

second component of D is defined as

(57) D1 : SF1 → Rep S1 , D1(U) = B⊗Svect U ,

where the S1-action on D1(U) is the left S1-action on B, and where U ∈ SF1 = Svect. On
morphisms we set D1(f) = idB ⊗ f .

6.2. Proposition. The functor D is an equivalence of C-linear categories.
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Proof. We will construct a functor E : Rep S → SF which is inverse to D separately in the
two sectors.

Given V ∈ Rep S0, the G-module E(V ) has V as the underlying super-vector space with
the action of a1 and a2 given by the action of x+ and x−, respectively. On morphisms f in
Rep S0 we set E(f) = f .

For a given object V ∈ Rep S1, we set E(V ) = B∗ ⊗S1 V and B∗ is the right S1-module
with action f(·)a = f(a·), for any C-linear map f : B → C and a ∈ S1. On morphisms f in
Rep S1 we set E(f) = idB∗ ⊗S1 f .

To see that the functor B∗⊗S1 (−) is invertible, we need one more observation: the algebra
S1 is isomorphic to B ⊗Svect B

∗ as a (S1, S1)-bimodule. The isomorphism can be described
explicitly on a basis of S1 as

e1 7→ b⊗ b∗ + c⊗ c∗, x+e1 7→ c⊗ b∗, x−e1 7→ b⊗ c∗, x+x−e1 7→ c⊗ c∗,

where b = x−x+e1 and c := x+b = x+e1 are a basis of the left module B, while b∗ and c∗ give
the corresponding dual basis in the right module B∗. We have ω(b∗) = b∗ and b∗.x+ = 0,
b∗.x− = c∗, etc. It follows from this isomorphism that, conversely, B∗ ⊗S1 B

∼= C1|0.

It is now clear that the compositions E ◦ D and D ◦ E are naturally isomorphic to the
identity functors 1SF and 1Rep S, respectively. �

6.3. D as a multiplicative functor. Below we will make an ansatz for isomorphisms

(58) ∆U,V : D(U ∗ V )→ D(U)⊗RepS D(V ) .

We do not know a good motivation for this ansatz. It was found by starting from a more
general ansatz for ∆U,V with free parameters and then using computer algebra to fix a solution
which transports the braiding in SF0 to the standard R-matrix for Q0 (see Section 7.7 and
Remark 7.8) and makes the associator of SF look as simple as possible after it is transported
to Rep S.

The resulting ansatz is defined sector by sector. Before we give it, we need a bit of notation.
Firstly, the underlines in the source and target for ∆U,V below indicate on which tensor factors
S acts. For example, U ⊗ B ⊗ V means S acts (via the coproduct) on U and B, but not on
V . Next, µS stands for the multiplication S⊗ S → S, and for an S-module U we denote the
action map by ρU : S⊗ U → U . We will also need the constants

(59) δ0 = 1⊗ 1 + x− ⊗ x+ ∈ S⊗ S , δ1 = 1 + x+x− ∈ S .

Note that they are multiplicatively invertible with inverses

(60) δ−1
0 = 1⊗ 1− x− ⊗ x+ ∈ S⊗ S , δ−1

1 = 1− x+x−(e0 + 1
2
e1) ∈ S .

The right multiplication by a ∈ S0 will be denoted by

(61) Ra : S→ S , Ra = µS ◦ (idS ⊗ a) .
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00 01

10 11

Figure 1. String diagram notation for ∆U,V in the four sectors. Diagrams
are read from bottom to top. Since in this paper string diagrams are only
used occasionally to make some formulas more readable, we do not detail our
conventions, but instead refer to [DR, Sect. 2.1].

Since a is parity-even, this is indeed a morphism in Svect, and, since the multiplication is
on the right, it is also a morphism in Rep S. Note that the image of Rb, with b as in (55), is
precisely B, and we will use Rb to project from S to B in a way compatible with the S-action.

In Figure 1 we express the formulas for ∆U,V given below in terms of string diagrams.

• 00 sector: ∆U,V : U ⊗ V → U ⊗ V is given by

(62) ∆U,V =
(
ρU ⊗ ρV

)
◦
(
idS ⊗ τ s.v.

S,U ⊗ idV
)
◦
(
δ0 ⊗ idU ⊗ idV

)
,

where τ s.v. is defined in (28).
• 01 sector: ∆U,V : B⊗ U ⊗ V → U ⊗ B⊗ V is given by

(63) ∆U,V =
(
ρU ⊗Rb ⊗ idV

)
◦
(
Rδ1 ⊗ τ s.v.

S,U ⊗ idV
)
◦
(
∆S ⊗ idU ⊗ idV

)
.

Since B ⊂ S, it makes sense to apply ∆S to elements in B. The right multiplication
with b projects from S to B, so that the target is indeed U ⊗ B⊗ V .
• 10 sector: ∆U,V : B⊗ U ⊗ V → B⊗ U ⊗ V is given by

(64) ∆U,V =
(
Rb ⊗ idU ⊗ ρV

)
◦
(
idS ⊗ τ s.v.

S,U ⊗ idV
)
◦
(
∆S ⊗ idU ⊗ idV

)
.
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• 11 sector: ∆U,V : S0 ⊗ U ⊗ V → B⊗ U ⊗ B⊗ V is given by

(65) ∆U,V =
(
idB ⊗ τ s.v.

B,U ⊗ idV
)
◦
(
[(Rb ⊗Rb) ◦∆S]⊗ idU ⊗ idV

)
.

Here, in the source S-module we have identified S0 and G.

6.4. Lemma. The linear maps ∆U,V are intertwiners of S-modules.

Proof. In sector 00, we have to verify that for all a ∈ S we have (e0 ⊗ e0) · ∆S(a) · δ0 =

(e0⊗e0)·δ0 ·∆S(a). Here the idempotents e0 appear because S⊗S acts on two representations
from Rep S0 (without the factor e0 ⊗ e0 the identity is false). For a = L, the above identity
is clear, and for a = x±, it follows from a short calculation.

In the other three sectors, the intertwiner property is even more direct: its follows since ∆S

is an algebra map, and since the right-multiplications Rδ1 and Rb are left-module intertwiners.
(For those versed in string diagrams, the intertwining property will be obvious from Figure 1.)

�

6.5. Lemma. The ∆U,V are isomorphisms.

Proof. We proceed sector by sector. Since δ0 has a multiplicative inverse, it is clear that
∆U,V is invertible in sector 00. In sectors 01 and 10 the inverse maps are given by, in string
diagram notation:

01 10

For example, in sector 10, compute ∆−1
UV ◦ ∆UV by first moving the b in ∆UV past the

coproduct in ∆−1
UV . Then use the identity (b⊗ 1) · ((id⊗S) ◦∆(b)) · (b⊗ 1) = b⊗ (δ1e0) and

µS ◦ (S ⊗ id) ◦∆S = 1 ◦ ε (see [DR, Lem. 2.3]). In this calculation, one needs coassociativity
of ∆S, which holds here as we are using it only in the sector S1 → S1 ⊗ S0 ⊗ S0, where Λ is
the identity. Since the underlying vector spaces are finite-dimensional, it is enough to check
∆−1
UV ◦∆UV = id. The computation in sector 01 is similar.

In sector 11, we establish that the map ∆U,V is surjective by a direct computation. As in
the proof of Proposition 6.2, we first fix a basis in B as B = Cb ⊕ Cc and c = x+.b. Next,
note the equation

(66) ∆S(x±) · e1 ⊗ e1 = (x± ⊗ 1− i1⊗ x∓) · e1 ⊗ e1 ,

which allows one to compute the image ∆S(S0) · b⊗ b easily:

∆S(x+e0) · b⊗ b = c⊗ b, ∆S(e0) · b⊗ b = b⊗ b,
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∆S(x−e0) · b⊗ b = −ib⊗ c, ∆S(x−x+e0) · b⊗ b = b⊗ b + ic⊗ c.

This image is the super vector space B⊗Svect B. Since the dimension of S0 and B⊗Svect B is
four, surjectivity of ∆U,V implies that it is an isomorphism.

We thus have that ∆U,V is an isomorphism in all four sectors. �

That ∆U,V is natural in U and V is immediate. Thus, together with the two previous
lemmas we see that (58) is a natural family of isomorphisms, thus proving the following
proposition.

6.6. Proposition. With the isomorphisms ∆U,V as in (62)–(65), the functor D : SF → Rep S

is multiplicative.

7. Transport of associator, braiding and ribbon twist from SF to RepQ

7.1. Transporting associators along multiplicative functors. We now describe how to
transport associators along multiplicative equivalences. Let C be a monoidal category with
a tensor-product functor ⊗C and an associator αC, and D a category with a tensor-product
functor ⊗D which is not equipped with an associator. Consider a multiplicative equivalence
F : C → D with family of isomorphism {ΘU,V : F(U ⊗C V ) → F(U) ⊗D F(V )}. We now
seek natural isomorphisms αDX,Y,Z , for X, Y, Z ∈ D, such that for all U, V,W ∈ C, the diagram

(67) F
(
U ⊗C (V ⊗C W )

)
ΘU,V⊗CW

��

F(αCU,V,W )
// F
(
(U ⊗C V )⊗C W

)
ΘU⊗CV,W

��
F(U)⊗D F(V ⊗C W )

id⊗ΘV,W

��

F(U ⊗C V )⊗D F(W )

ΘU,V ⊗id

��

F(U)⊗D
(
F(V )⊗D F(W )

) αDF(U),F(V ),F(W )
//
(
F(U)⊗D F(V )

)
⊗D F(W )

commutes. Such an αD exists (use the functor inverse to F to define it), is unique (since αD is
natural and F is essentially surjective) and automatically satisfies the pentagon condition (as
αC does and the ΘU,V are isomorphisms). The unit isomorphisms can be transported in the
same way, turning D into a monoidal category. By construction, for this monoidal structure
on D, the multiplicative equivalence F becomes monoidal.

Starting from the monoidal category SF , we use the above diagram to transport the
monoidal structure from SF to Rep S via D, and then further to RepQ via G.
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7.2. Transporting the associator from SF to Rep S. The coassociator Λ for S given
in Section 4 was in fact computed via the method described above. That is, the associator
αRepS inRep S was computed from the multiplicative functorD using the family ∆U,V defined
in (62)-(65) and the associator αSFU,V,W of SF as given in Section 3.3. It turns out6 that the
associator αSFU,V,W can be defined via the action of a (necessarily even) element Λ ∈ S⊗ S⊗ S,

(68) Λ.(u⊗ v ⊗ w) = αRepS(u⊗ v ⊗ w) .

To determine Λ (or to verify the expression in (43), depending on the point of view), we
evaluate the diagram (67) in each of the eight sectors in turn. That is, we write

(69) Λ =
∑

a,b,c∈{0,1}

Λ̃abc where Λ̃abc ∈ Sa ⊗ Sb ⊗ Sc

and solve the condition (67) for each Λ̃abc separately. The relation to the Λabc entering the
expression for Λ in (43) is Λ̃abc = Λabc · ea ⊗ eb ⊗ ec.

For example, in sector 000, diagram (67) reads

(70) =

Choosing U = V = W = S0 (recall that we identify S0 and G) and evaluating on e0⊗e0⊗e0,
we see that (70) implies

(71) Λ̃000 · (1⊗ δ0) · (id⊗∆S)(δ0) = (e0 ⊗ e0 ⊗ e0) · (δ0 ⊗ 1) · (∆S ⊗ id)(δ0) .

On the other hand, if (71) holds, so does (70) for all U, V,W ∈ SF0 = Rep S0 by associativity
of the S-action. Finally, as δ0 is multiplicatively invertible, the solution Λ̃000 ∈ S0⊗S0⊗S0 to
(71) is unique and given by e0⊗e0⊗e0, as already stated in (43). The reasoning is the same
in all the sectors as defined by the projectors ei ⊗ ej ⊗ ek, and we just state the condition
analogous to (71) in each sector in Table 1. On the one hand, these conditions determine Λ

uniquely (by invertibility of ∆U,V ), and on the other hand, they guarantee commutativity of
the diagram (67) for all U, V,W .

6In the category of vector spaces this would be automatic, but in super-vector spaces, the associator could
involve in addition the parity involution ω.
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001 : Λ̃001 ·
(
(id⊗∆S) ◦ (Rδ1 ⊗Rb) ◦∆S(v)

)
· (1⊗ δ1 ⊗ b)

= (e0 ⊗ e0 ⊗ 1) · (δ0 ⊗ 1) ·
(
(∆S ⊗ id) ◦ (Rδ1 ⊗Rb) ◦∆S(v)

)
010 : Λ̃010 ·

(
(id⊗∆S) ◦ (Rδ1 ⊗Rb) ◦∆S(v)

)
· (1⊗ b⊗ 1)

=
(
(∆S ⊗ id) ◦ (Rb ⊗ id) ◦∆S(v)

)
· (δ1 ⊗ b⊗ 1) · γ(13)

100 : Λ̃100 · (1⊗ δ0) ·
(
(id⊗∆S) ◦ (Rb ⊗ id) ◦∆S(v)

)
=
(
(∆S ⊗ id) ◦ (Rb ⊗ id) ◦∆S(v)

)
· (b⊗ 1⊗ 1)

110 : Λ̃110 ·
(
(id⊗∆S) ◦ (Rb ⊗Rb) ◦∆S(h)

)
· (1⊗ b⊗ 1)

=
{

(∆S ⊗ id)
(
δ0 ·∆S(h)

)}
· (b⊗ b⊗ 1)

101 : Λ̃101 ·
{

(id⊗∆S)
(
∆S(h) · b⊗ b

)}
· (1⊗ δ1 ⊗ b)

= (Rb ⊗ µS ⊗ id) ◦ (∆S ⊗ τ s.v.
B,S0

) ◦
({

(Rb ⊗Rb) ◦∆S ◦ µS
}
⊗ id

)
(h⊗ γ)

011 : Λ̃011 ·
(
(id⊗∆S)(δ0)

)
·
(
1⊗ (∆S(h) · b⊗ b)

)
=
{(
S−1 ◦ µS ◦ (id⊗ S)

)
⊗ id⊗ id

}
◦
{

id⊗
(
(Rδ1 ⊗Rb) ◦∆S

)
⊗ id

}
◦
{

id⊗
(
(Rb ⊗Rb) ◦∆S

)}
◦∆S(h)

111 : Λ̃111 ·
{(

id⊗ (∆S ◦ µS)
)(

∆S(v)⊗ h
)}
· b⊗ b⊗ b

=
{(

(Rb ⊗Rb) ◦∆S ◦ µS
)
⊗ id

}
◦ (id⊗ τ s.v.

B,S0
) ◦
{(

(Rδ1 ⊗Rb) ◦∆S(v)
)
⊗ φ(h)

}
Table 1. Conditions determining Λ̃abc ∈ Sa ⊗ Sb ⊗ Sc via an equation in Sa ⊗
Sb ⊗ Sc. The condition for sector 000 is stated in (71). The above conditions
have to hold for all h ∈ S0 and v ∈ B. In sectors 010 and 101, γ is given
by γ := expC = (1 ⊗ 1 + x− ⊗ x+ − x+ ⊗ x− − x+x− ⊗ x+x−) · e0 ⊗ e0 as in
Section 3.3; the notation γ(13) means that it acts on the first and third tensor
factors. The map φ in sector 111 is given in (33).

Since αRep S satisfies the pentagon by construction, Λ satisfies the 3-cocycle condition (95).
(We nonetheless checked this independently by computer algebra.) Λ is in addition counital,
(id⊗ ε⊗ id)(Λ) = 1⊗ 1. We thus arrive at the following proposition.

7.3. Proposition. The natural isomorphisms αRepS from (68) with Λ as in (43) define an
associator on D. With respect to this associator, the equivalence D : SF → Rep S with
multiplicative structure ∆U,V defined in (62)-(65) is monoidal.
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7.4. Transporting the associator from Rep S to RepQ. We repeat the procedure in
Section 7.1 and transport the associator αRep S to an associator αRepQ in RepQ using the
multiplicative equivalence G : Rep S→ RepQ. Since RepQ consists of (finite-dimensional)
Q-modules in vector spaces, the associator on RepQ necessarily takes the form

(72) αRepQ
U,V,W (u⊗ v ⊗ w) = Φ.(u⊗ v ⊗ w) ,

where u, v, w are elements of the three Q-modules U, V,W and Φ ∈ Q⊗ Q⊗ Q. To compute
Φ, we can choose U = V = W = Q and evaluate on the element 1⊗ 1⊗ 1.

In terms of the diagram (67), this means the following. Recall from the proof of Propo-
sition 5.2 the functor F inverse to G. Let us abbreviate Q̂ := F(Q). The S-module Q̂ has
parity involution given by (47), L acts by K2 and x± act by f±, see (46). Diagram (67) reads

(73)
(
(ΓQ̂,Q̂ ⊗ id) ◦ ΓQ̂⊗Q̂,Q̂

)(
Λ .̂ (1⊗ 1⊗ 1)

)
= Φ ·

[
(id⊗ ΓQ̂,Q̂) ◦ ΓQ̂,Q̂⊗Q̂(1⊗ 1⊗ 1)

]
,

where ΓU,V is the multiplicative structure from (49) and the notation ‘ .̂ ’ will be explained
momentarily.

There are two slightly subtle points in evaluating (73). Firstly, Λ acts on Q̂ ⊗ Q̂ ⊗ Q̂ via
the symmetric braiding in Svect, i.e. with parity signs. We have written ‘ .̂ ’ instead of ‘ . ’
in (73) to stress this point. Secondly, 1 ∈ Q̂ is not of definite parity (in particular, it is not
parity-even), and, since Q̂ is different from S, we cannot simplify Λ .̂ (1⊗1⊗1) to Λ as might
be suggested by the notation. There is one other place where one has to be careful with
parity signs, and this is the action of ΓQ̂,Q̂⊗Q̂, which is, for a, b, c ∈ Q̂,

(74) ΓQ̂,Q̂⊗Q̂(a⊗ b⊗ c) = a⊗ b⊗ c+ e1.a⊗
[
∆S((ξ − 1)e1) .̂ (b⊗ c)

]
.

Taking all this into account, the unique solution to (73) can be obtained with the help of
computer algebra to be

(75) Φ = e0 ⊗ e0 ⊗ e0 + e0 ⊗ e0 ⊗ e1 + e1 ⊗ e0 ⊗ e0 + e0 ⊗ e1 ⊗ e1 + e1 ⊗ e1 ⊗ e0

+ Φ010e0 ⊗ e1 ⊗ e0 + Φ101e1 ⊗ e0 ⊗ e1 + Φ111e1 ⊗ e1 ⊗ e1 ,

where its non-trivial components are factorised as

Φ010 =
(
1⊗ 1⊗ 1 + (1 + i)f+K⊗ K⊗ f−

)(
1⊗ 1⊗ 1 + (1− i)f−K⊗ K⊗ f+

)
,

Φ101 =
(
1⊗ 1⊗ 1 + (1 + i)1⊗ f+K⊗ f− + (1− i)f−K⊗ f+ ⊗ 1

)
×
(
1⊗ 1⊗ 1 + (1 + i)f+K⊗ f− ⊗ 1 + (1− i)1⊗ f−K⊗ f+

)
1⊗ K⊗ 1 ,

Φ111 =
β2

i

(
1⊗ 1⊗ 1 + (i− 1)

(
1⊗ f+K⊗ f− + f+K⊗ K⊗ f− − f+K⊗ f− ⊗ 1 + 1⊗ f−f+ ⊗ 1

))
×
(
1⊗ 1⊗ 1− (i− 1)

(
1⊗ f−K⊗ f+ + f−K⊗ K⊗ f+ − f−K⊗ f+ ⊗ 1− 1⊗ f−f+ ⊗ 1

))
×
(
1⊗ 1⊗ 1− 21⊗ f−f+ ⊗ 1

)
1⊗ K⊗ 1 .
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Above, we have expressed Φ in terms of the generators f± and in a factorised form, but one
can check that it is equal to (7).

By construction, Φ satisfies the compatibility condition

(76) (∆⊗ id)(∆(x)) = Φ ·
(
(id⊗∆)(∆(x))

)
· Φ−1 , x ∈ Q ,

with the coproduct of Q, as well as the cocycle condition (95). Since the equivalences we use
preserve the standard unit-constraints of the categories, we have (id⊗ ε⊗ id)(Φ) = 1 as well.
Needless to say, we in addition verified all three identities with the help of computer algebra.

Altogether we have shown:

7.5. Proposition. The natural isomorphism αRepQ from (72) with Φ as in (75) defines an
associator on RepQ. With respect to this associator, the equivalence G : Rep S → RepQ

with multiplicative structure ΓU,V defined in (49) is monoidal.

7.6. Quasi-Hopf structure on Q: antipode and the α and β elements. We can
also introduce an antipode structure on Q that makes it a quasi-Hopf algebra. The anti-
automorphism S is given by the same formulas (3) as for Q. The elements α and β char-
acterising the antipode can be found by Proposition A.6: fixing α = 1 there is unique β
satisfying all the axioms of a quasi-Hopf algebra, namely

(77) α = 1 , β = e0 + β2
(
K− 2iEF

)
e1 = e0 − 2iβ2Ce1 ,

with the Casimir element C defined under (8). These are central elements of Q, and they are
invertible (since β2 = 1). We note that the element β is a linear combination of all the central
primitive idempotents. Indeed, it can be written as β = e0−iβ2(e+

1 −e−1 ), where idempotents
e±1 are central primitive and correspond to the simple projective covers X±2 from 2.2:

(78) e±1 =
(1

2
1±C

)
e1 .

7.7. Transporting the braiding. The braiding on RepQ is computed from that in SF
along the same lines as the associator. Consider the equivalence P := G ◦ D : SF → RepQ.
The functor P is monoidal via

(79) ΠU,V : P(U ∗ V )→ P(U)⊗RepQ P(V ) , ΠU,V = ΓD(U),D(V ) ◦ G(∆U,V ) .

Below we will write ⊗ instead of ⊗RepQ for brevity. The braiding σM,N on RepQ is uniquely
determined by the braiding cU,V on SF (see Section 3.4) by requiring commutativity of the
diagram

(80) P(U ∗ V )
P(cU,V )

//

ΠU,V
��

P(V ∗ U)

ΠV,U
��

P(U)⊗ P(V )
σP(U),P(V )

// P(V )⊗ P(U)
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00 : τ s.v.
U,V

(
τ s.v.
S,S (δ0) .̂ γ−1 .̂ (u⊗ v)

)
= σ00

U,V

(
δ0 .̂ (u⊗ v)

)
01 : τ s.v.

U,B⊗SvectV

([
τ s.v.
B,U

(
∆S(a) .̂ (b⊗ κ) .̂ (1⊗ u)

)]
⊗ v
)

= σ01
U,B⊗SvectV

([
∆S(a) .̂ (δ1 ⊗ b) .̂ (u⊗ 1)

]
⊗ v
)

10 : τ s.v.
B⊗SvectU,V

◦ (idB ⊗ idU ⊗ ρV )

◦ (idB ⊗ τ s.v.
S,U ⊗ ωV )

([
(τ s.v.
S,S ◦∆S(a)) · (b⊗ (δ1κ))

]
⊗ u⊗ v

)
= σ10

B⊗SvectU,V
◦ (idB ⊗ idU ⊗ ρV ) ◦ (Rb ⊗ τ s.v.

S,U ⊗ idV )
(

∆S(a)⊗ u⊗ v
)

11 : β · τ s.v.
B⊗SvectU,B⊗SvectV

◦ (idB ⊗ τ s.v.
B,U ⊗ idV )

(
τ s.v.
B,B

[
(idB ⊗ Lξ)

(
∆S(hκ−1) · (b⊗ b)

)]
⊗ u⊗ v

)
= σ11

B⊗SvectU,B⊗SvectV
◦ (idB ⊗ idU ⊗ Lξ ⊗ idV )

◦ (idB ⊗ τ s.v.
B,U ⊗ idV )

([
∆S(h) · (b⊗ b)

]
⊗ u⊗ v

)
Table 2. Conditions determining σij. The conditions have to hold for all
h ∈ S0, a ∈ B, u ∈ U , v ∈ V and all U ∈ SF i, V ∈ SF j. We have written .̂ to
denote the product in S⊗Svect S which includes a parity sign (though this only
makes a difference in sector 00). Lξ(u) := ξ.u denotes the left action with ξ =

x++x−, and γ−1 := exp(−C) = (1⊗1−x−⊗x++x+⊗x−−x+x−⊗x+x−)·e0⊗e0

and κ := exp(1
2
Ĉ) = (1− x+x−)e0, see Section 3.3.

for all U, V ∈ SF . The resulting conditions can be evaluated sector by sector and are collected
in Table 2. We give the computation in the 10-sector as an example.

In computing ΠUV note that ΓD(U),D(V ) is different from the identity only in sector 11, see
(49), and that G(f) = f for all morphisms f in Rep S, see Section 5.1. To evaluate the above
diagram for U ∈ SF1 and V ∈ SF0, we thus only need to combine sectors 10 and 01 of ∆UV

as given in (64) and (63) (see also Figure 1) with the braiding of SF as stated in Section 3.4.
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In string diagram notation, the resulting condition is

(81) = ,

where κ := exp(1
2
Ĉ) = (1 − x+x−)e0. The circle around the crossings has been added to

stress that in these diagrams all braidings are in Svect, even though the diagram itself is a
morphism in vect (or rather in RepQ1). The morphisms σijM,N look simpler when written as
τ s.v.
M,N ◦ (action of modes). We therefore rewrite the left hand side of (81) as

(82) .

This gives the formula for the 10-sector listed in Table 2.

Since P is a monoidal equivalence, (80) is solved by a unique natural collection of isomor-
phisms {σM,N : M ⊗RepQN → N ⊗RepQM}. Hence the conditions in Table 2 have a unique
solution. It is given by

σ00 = τ s.v. ◦
(
1⊗ 1− 2f−K⊗ f+

)
,

σ01 = τ s.v. ◦
(
1⊗ 1− (1 + i)f−K⊗ f+ − (1 + i)f+K⊗ f− + (1− i)f−f+ ⊗ 1 + 2if−f+ ⊗ f−f+

)
,
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σ10 = τ s.v. ◦
(
1⊗ 1 + (1 + i)f−K⊗ f+ + (1 + i)f+K⊗ f−

+ (1 + i)1⊗ f−f+ − 2if−f+ ⊗ f−f+
)
· 1⊗ K ,

σ11 = τ s.v. ◦ β
i

(
1⊗ 1− 2if−K⊗ f+ + (i− 1)1⊗ f−f+

− (1 + i)f−f+ ⊗ 1 + 2f−f+ ⊗ f−f+
)
· K⊗ 1 .

We verified (and found) this by computer algebra. To do so, one has to remove the need to
verify the conditions in Table 2 for all U, V . One uses that by naturality, σM,N is uniquely
determined by σQ,Q for all M,N ∈ RepQ. Consider sector 10 as an example. It is sufficient
to determine σ10

Q1,Q0
. We choose U = Q1 (the underlying super-vector space), V = Q0 (as a

G-module) and compose both sides of (81) with idQ0 ⊗ ρQ1 , where ρQ1 denotes the action of
B ⊂ S1 on Q1. Then by naturality (idQ0⊗ρQ1)◦σ10

B⊗SvectQ1,Q0
= σ10

Q1,Q0
◦(ρQ1⊗ idQ0). Since ρQ1

is surjective (for example, e1 = b.e1 + c.(f−e1), etc., with c = x+.b), this determines σ10
Q1,Q0

uniquely.

When expressed in terms of the generators E, F, and K, the braiding σ takes the form

σ00 = τ s.v. ◦
(
1⊗ 1 + 2iE⊗ F

)
,

σ01 = τ s.v. ◦
(
1⊗ 1− (1−i)E⊗ F + (1−i)FK⊗ EK + (1+i)EFK⊗ 1 + 2iEFK⊗ EFK

)
,

σ10 = τ s.v. ◦
(
1⊗ 1 + (1−i)E⊗ F + (1−i)FK⊗ EK− (1−i)1⊗ EFK− 2iEFK⊗ EFK

)
· 1⊗ K ,

σ11 = τ s.v. ◦ β
i

(
1⊗ 1− 2E⊗ F + (1+i)1⊗ EFK− (1−i)EFK⊗ 1− 2EFK⊗ EFK

)
· K⊗ 1 .

To finally recover the formula for R as given in (9), one still needs to solve σM,N(m ⊗ n) =

τM,N(R.(m⊗ n)), where τ is the symmetric braiding in vector spaces, τM,N(m⊗ n) = n⊗m.
To this end, we first observe that the braiding in super-vector spaces can be expressed as

(83) τ s.v.
M,N = τM,N ◦

1

2
(idM ⊗ idN + ωM ⊗ idN + idM ⊗ ωN − ωM ⊗ ωN) ,

where ωM(m) = (e0 − ie1)K.m as in (47). This produces the prefactor composed of the
generators 1 and K in (9). Since this R-matrix arises as a transported braiding from a
braided monoidal category, by construction it gives a morphism in RepQ (i.e. it satisfies
(96)), and it obeys the two hexagon identities (i.e. it satisfies the two identities in (97)).

Together with Proposition 7.5 and Section 7.6 we have now proved Theorem 1.2. In fact,
along the way we have also proved Theorem 1.4: by Propositions 7.3 and 7.5, the equivalence
P is monoidal. By construction of the R-matrix of Q, the equivalence P is also braided.

7.8. Remark. It is known that the quotient of Q by the ideal generated by (1 − K2) (the
algebra isomorphic to Q0) is a quasi-triangular Hopf algebra (rather than quasi-Hopf) with
the standard R-matrix (see, e.g., [Kas])

R(st.) =
1

2

∑
m,n=0,1

(−1)mnKm ⊗ Kn
(
1⊗ 1 + 2iE⊗ F

)
(84)
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=
1

2

∑
m,n=0,1

(−1)mnKm ⊗ Kn
(
1⊗ 1− 2f−K⊗ f+

)
.

This coincides with the 00-component of the R-matrix (9) just computed. Introducing the
quasi-Hopf structure on Q given by the coassociator Φ and the antipode elements α and β,
we have thus extended the quasi-triangular structure from the quotient Q0 onto the whole
quantum group Q.

7.9. Transporting the ribbon twist. The ribbon twist in SF is given in Section 3.5. The
ribbon twist in RepQ is uniquely determined by

(85) θP(U) = P(θU) : P(U) −→ P(U) .

In sector 0 this means that for M ∈ RepQ0, m ∈M , we have θM(m) = (1 + 2f+f−).m.

In sector 1 the calculation is more interesting. Condition (85) now reads θB⊗SvectV =

β−1 · idB ⊗ ωV . To proceed, we note that, for all a ∈ B,

(86) ωB(a) = (f−f+ − f+f−).a .

We can therefore write, for a ∈ B and u ∈ U ,

(87) θB⊗SvectU(a⊗ u) = β−1 · ωB⊗SvectU

([
(f−f+ − f+f−)a

]
⊗ u
)
,

where we used that ω is monoidal. Since in sector 1, ω is given by −iK, see (47), we have,
for M ∈ RepQ1, m ∈M , that θM(m) = β−1(−i)K(1− 2f+f−).m. Altogether,

(88) θM(m) =
(
e0(1 + 2f+f−)− iβ−1e1K(1− 2f+f−)

)
.m ,

where now M ∈ RepQ and m ∈M .

In our convention (and in that of, e.g., [Kas]), acting with the ribbon element v of a Hopf
algebra gives the inverse twist. Taking the inverse of (88) produces

(89) v = (e0 − iβKe1)(1− 2f+f−) .

By construction, v is central (as its left-action is an intertwiner) and invertible (since the
ribbon twist in SF is). Its decomposition on the three primitive central idempotents e0 =
1
2
(1 + K2) and e±1 defined in (78), and central nilpotents w± = 1

2
EF(1± K)e0 is

(90) v = e0 + β(e+
1 − e−1 ) + 2i(w+ −w−) .

Let M = R21R be the monodromy matrix. Explicitly, it is given by, for q = i,

(91) M =
1

4

1∑
m,n=0

3∑
i,j=0

(
β2

q

)ij+m(i+j+1)
(q−q−1)m+n q−m

2−mj+2nj−2ni−ij+mi FmEnKj⊗EmFnKi .

It is straightforward to see that the conditions M∆(v) = v ⊗ v and S(v) = v hold (see
Definition A.7), and so we get:

7.10. Lemma. v from (90) is a ribbon element for the quasi-triangular quasi-Hopf algebra Q.
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7.11. Remark. The Hopf algebra U qs`(2) at q = eiπ/p can be realised as a Hopf subalgebra of
a quasi-triangular Hopf algebra D of twice the dimension of U qs`(2), see [FGST1, Sect. 4.1].
It turns out that the monodromy matrix and ribbon element of D lie in the subalgebra
U qs`(2)⊗U qs`(2) ⊂ D⊗D. For p = 2, these expressions agree with (89) and (91) in the case
β = exp(+πi/4), see [FGST1, Sect. 4.2& 4.6]. It is verified in [FGST1] that this monodromy
matrix and ribbon element reproduce the SL(2,Z)-action on the (3p− 1)-dimensional space
ofWp-torus amplitudes. In the present paper, the symplectic fermion case is β = exp(−πi/4)

(the difference to [FGST1] arises from the convention of how to define the T -action in terms
of v and from the normalisation convention for the (co)integral, see Appendix B.1). We
show in Appendix B that our monodromy matrix and the ribbon element at any β with
β4 = −1 do define an SL(2,Z)-action on the centre of the quasi-Hopf algebra (Q,Φ), and
that at β = exp(−πi/4) this representation of SL(2,Z) is isomorphic to the one on symplectic
fermion torus blocks and to the one in [FGST1].

Appendix A. Conventions for quasi-bialgebras and quasi-Hopf algebras

In this appendix, we review basics of theory of quasi-Hopf algebras [Dr1] (for conventions,
we follow [CP, Sec. 16.1]). In this paper (as in [CP, Sec. 16.1]) we make the

Assumption 1: We will only consider quasi-Hopf algebras A such that the unit
isomorphisms λU and ρU in RepA are as in vect.

This simplifies for example the ε-conditions (92) and (94) below as they do not involve non-
trivial invertible elements l and r.

A.1. Definition. A quasi-bialgebra (say, over C) is an associative algebra A over C together
with algebra homomorphisms: the counit ε : A→ C and the comultiplication ∆ : A→ A⊗A,
and an invertible element Φ ∈ A ⊗ A ⊗ A called the coassociator, satisfying the following
conditions:

(92) (ε⊗ id) ◦∆ = id = (id⊗ ε) ◦∆,

and

(93) (∆⊗ id)(∆(a)) = Φ
(
(id⊗∆)(∆(a))

)
Φ−1,

for all a ∈ A; and the coassociator Φ is counital

(94) (id⊗ ε⊗ id)(Φ) = 1⊗ 1

and is a 3-cocycle

(95) (∆⊗ id⊗ id)(Φ) · (id⊗ id⊗∆)(Φ) = (Φ⊗ 1) · (id⊗∆⊗ id)(Φ) · (1⊗ Φ).
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The associativity isomorphisms αRepA
U,V,W : U ⊗ (V ⊗ W ) → (U ⊗ V ) ⊗ W for the tensor

product of RepA are related to the coassociator Φ of A by

αRepA
U,V,W (u⊗ v ⊗ w) = Φ.(u⊗ v ⊗ w) ,

for any elements u, v, w in A-modules U , V , and W , respectively.

A.2. Definition. A quasi-triangular quasi-bialgebra is a quasi-bialgebra A equipped with an
invertible element R ∈ A⊗A called the universal R-matrix (or R-matrix for short) such that

(96) R∆(a) = ∆op(a)R

for all a ∈ A; and the quasi-triangularity conditions

∆⊗ id(R) = Φ−1
231R13Φ132R23Φ−1,

id⊗∆(R) = Φ312R13Φ−1
213R12Φ.

(97)

Here, we set Φ231 =
∑

(Φ) Φ′′ ⊗ Φ′′′ ⊗ Φ′, etc., for an expansion Φ =
∑

(Φ) Φ′ ⊗ Φ′′ ⊗ Φ′′′ ∈
A⊗ A⊗ A, and also R13 =

∑
(R) R1 ⊗ 1⊗R2, for an expansion R =

∑
(R)R1 ⊗R2.

The braiding isomorphisms σU,V in RepA are related to the R-matrix by

σU,V (u⊗ v) = τU,V (R.(u⊗ v)) ,

where τ is the symmetric braiding in vector spaces, τU,V (u ⊗ v) = v ⊗ u. Due to (97), the
isomorphisms satisfy the hexagon axioms of a braided monoidal category. Applying the linear
map id ⊗ ε ⊗ id to both equations in (97) and using the counital condition (94), we obtain
the following proposition.

A.3. Proposition. [Dr1, Sec. 3] Under Ass. 1, for a quasi-triangular quasi-bialgebra we have
two relations

(98) (ε⊗ id)(R) = 1 = (id⊗ ε)(R).

Proposition A.3 corresponds to the commutativity of the diagram involving the left- and
right-units and the braiding. Altogether, we have now turned RepA into a braided monoidal
category.

A.4. Definition. Under Ass. 1, a (quasi-triangular) quasi-Hopf algebra is a (quasi-triangular)
quasi-bialgebra A equipped with an anti-homomorphism S : A→ A called the antipode, and
elements α, β ∈ A, such that

(99)
∑
(a)

S(a′)αa′′ = ε(a)α ,
∑
(a)

a′βS(a′′) = ε(a)β

for all a ∈ A; and

(100)
∑
(Φ)

S(Φ′)αΦ′′βS(Φ′′′) = 1 ,
∑

(Φ−1)

(Φ−1)′βS((Φ−1)′′)α(Φ−1)′′′ = 1 .



34 A.M. GAINUTDINOV, I. RUNKEL

A.5. Proposition. [Dr1, Prop. 1.1] If the triple S̃, α̃, β̃ gives another antipode structure in
A then there exists unique element U ∈ A such that

(101) S̃(a) = US(a)U−1 , α̃ = Uα , β̃ = βU−1 .

So, S, α and β are uniquely determined up to the conjugation by a unique element U .

A.6. Proposition. If A is a Hopf algebra and Φ ∈ A⊗3 is an invertible counital element
satisfying (93) and the 3-cocycle condition (95) then

(1) the element

(102) γ ≡
∑
(Φ)

S(Φ′)Φ′′S(Φ′′′) =
∑

(Φ−1)

(Φ−1)′S((Φ−1)′′)(Φ−1)′′′

is central.
(2) assuming that γ has an inverse, (A,Φ) is a quasi-Hopf algebra with the same antipode

S and α = 1 and β = γ−1.

Proof. To prove the second equality in (102) we use the condition (95) in the following form

(103) (Φ−1 ⊗ 1) · (∆⊗ id⊗ id)(Φ) · (id⊗ id⊗∆)(Φ) = (id⊗∆⊗ id)(Φ) · (1⊗ Φ).

and apply on both sides the linear map ψ = µA ◦ (µA ⊗ µA) ◦ (id⊗ S ⊗ id⊗ S), where µA is
the multiplication in A. Computing the image of the map ψ, we use the properties

ψ
(
t · (∆(a)⊗ 1⊗ 1)

)
= ψ

(
t · (1⊗ 1⊗∆(a))

)
= ψ

(
(1⊗∆(a)⊗ 1) · t

)
= ε(a)ψ(t) ,

for any t ∈ A⊗4 and a ∈ A, together with the counital properties of Φ. The right-hand side
of (103) under ψ is then

∑
(Φ) S(Φ′)Φ′′S(Φ′′′), and

∑
(Φ−1)(Φ

−1)′S((Φ−1)′′)(Φ−1)′′′ is for the
left-hand side. We thus see that (102) is true. To prove that γ is central, we first note the
identities a =

∑
(a) a

′ε(a′′) =
∑

(a) a
′S(a′′)a′′′, for any a ∈ A, because A is a Hopf algebra,

and apply them for the product aγ (with the short-hand notation Φ̄ = Φ−1):

aγ =
∑

(a)(Φ̄)

a′Φ̄′S(Φ̄′′)ε(a′′)Φ̄′′′ =
∑

(a)(Φ̄)

a′Φ̄′S(Φ̄′′)S(a′′)a′′′Φ̄′′′ =
∑

(a)(Φ̄)

a′Φ̄′S(a′′Φ̄′′)a′′′Φ̄′′′ .

We apply the linear map id⊗ S ⊗ id on (93) multiplied by Φ−1 on the left, which results in∑
(a)(Φ̄)

a′Φ̄′ ⊗ S(a′′Φ̄′′)⊗ a′′′Φ̄′′′ =
∑

(a)(Φ̄)

Φ̄′a′ ⊗ S(Φ̄′′a′′)⊗ Φ̄′′′a′′′ .

Then, we can continue with rewriting aγ:

aγ =
∑

(a)(Φ̄)

Φ̄′a′S(Φ̄′′a′′)Φ̄′′′a′′′ =
∑

(a)(Φ̄)

Φ̄′ε(a′)S(Φ̄′′)Φ̄′′′a′′ = γa ,

i.e., γ is central indeed.

For the second point, (A,Φ) is a quasi-bialgebra by Definition A.1. Using the centrality of
γ and the assumption that it has the inverse, the conditions (99) are satisfied with α = 1 and
β = γ−1. Using (102), β and α satisfy (100), and thus (A,Φ) is the quasi-Hopf algebra. �
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A quasi-triangular quasi-Hopf algebra A is called ribbon if it contains a ribbon element v
defined in the same way as for ordinary Hopf algebras, see [So]:

A.7. Definition. A nonzero central element v ∈ A is called a ribbon element if it satisfies

(104) ∆(v) = M−1(v ⊗ v), S(v) = v.

In a ribbon quasi-Hopf algebra A, we have the identities [AC, So]

(105) v2 = uS(u), ε(v) = 1,

where u is the (generalisation of the) canonical Drinfeld element defined as

(106) u =
∑

(Φ),(R)

S(Φ′′βS(Φ′′′))S(R′′)αR′Φ′

and it satisfies S2(a) = uau−1, for any a ∈ A. The action by u is a canonical intertwiner
between any A-module U and its double dual U∗∗. Recall that the (left) dual U∗ for U in
RepA is defined as the vector space of C-linear maps U → C and the left A-action on U∗ is

(107) a · f(u) = f(S(a)u), u ∈ U, f ∈ U∗, a ∈ A.

This is as in the case of Hopf algebras.

Appendix B. SL(2,Z)-action on the centre of the quasi-Hopf algebra (Q,Φ)

In this section, we first recall the standard SL(2,Z)-action [LM, Ly] for a factorisable Hopf
algebra, following conventions in [FGST1], and reformulate it for the centre Z ≡ Z(Q) of
our quasi-Hopf algebra (Q,Φ). Its definition involves the ribbon element and the Drinfeld
and Radford mappings. We then establish for β = e±iπ/4 the equivalence to the SL(2,Z)-
representation obtained in [FGST1].

B.1. Notations and general definitions. We define the representation π of SL(2,Z) on
the centre Z of Q as follows: the operators S ≡ π(S) : Z→ Z and T ≡ π(T ) : Z→ Z are

(108) S(a) = φ
(
χ−1(a)

)
, T(a) = b S−1

(
v
(
S(a)

))
, a ∈ Z,

where v is the ribbon element, χ is the Drinfeld mapping, φ is the Radford mapping, and b
is a normalisation factor which will be fixed later as

(109) b = β2e2πi/3 .

Note that in the symplectic fermion case, β = e−πi/4 and so b = e−2iπc/24 with c = −2.

We recall now the definition of the main ingredients, the Drinfeld and Radford mappings
for quasi-triangular Hopf algebras, see also [FGST1, App.A]. Given the M -matrix for A, i.e.,
M = R21R ∈ A⊗ A, the Drinfeld mapping χ : A∗ → A is defined as

(110) χ(ϕ) = (ϕ⊗ id)M .
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A quasi-triangular (quasi-)Hopf algebra is called factorisable if the map χ is surjective. It is
well known [Dr2] that in a factorisable Hopf algebra A, the Drinfeld mapping χ : A∗ → A

intertwines the adjoint and coadjoint actions of A and its restriction to the space Ch(A) of
q-characters gives an isomorphism of associative algebras Ch(A)

∼−→ Z(A), where Z(A) is the
space of the adjoint-action (Ada(x) =

∑
(a) a

′xS(a′′)) invariants, the centre of A, while Ch(A)

is by definition the space of invariants in A∗ with respect to the coadjoint action of A, or
equivalently

Ch(A) =
{
ϕ ∈ A∗

∣∣ ϕ(xy) = ϕ
(
S2(y)x

)
∀x, y ∈ A

}
.

For a Hopf algebra A, a right integral µ is a linear functional on A satisfying

(µ⊗ id)∆(x) = µ(x)1

for all x∈A. Whenever such a functional exists, it is unique up to multiplication with
a nonzero constant. For a factorisable Hopf algebra, the integral can be normalised [Ly,
Sec. 3.8] (up to a sign) by requiring

(111) (µ⊗ µ)(M) = 1 .

The left–right cointegral c is an element in A such that

xc = cx = ε(x)c , ∀x ∈ A .

We normalise the cointegral by requiring µ(c) = 1. Let A be a Hopf algebra with right
integral µ and left–right cointegral c. The Radford mapping φ : A∗ → A and its inverse
φ−1 : A→ A∗ are given by

(112) φ(ϕ) =
∑
(c)

ϕ(c′)c′′ , φ−1(x) = µ(S(x)−) ,

where ‘−’ stands for an argument from A. The map φ has the important property that it
intertwines the coregular and regular actions of A on A∗ and A, respectively.

Below we will apply these expressions for the Drinfeld and Radford mapping to our quasi-
Hopf algebra (Q,Φ). This is motivated by the fact that the definition of adjoint and regular
representations is the same, and so their duals are also the same, see the note around (107)
(and of course by the outcome that we do indeed get an SL(2,Z)-action on Z(Q)). The main
difference to the Hopf-algebra case appears in the definition of the balancing element and so
in a special basis of q-characters, which we discuss now.

In order to compute the SL(2,Z)-action (108) explicitly, we need a basis in the space Ch(A)

of q-characters. In a ribbon quasi-Hopf algebra, we define the balancing element as [AC]

(113) g = βS(α)v−1u ,

with the canonical Drinfeld element u defined in (106). The balancing element g is group-like
and allows constructing the “canonical” q-character of an A-module V :

(114) qTrV ≡ TrV (g−1−) ∈ Ch(A) .
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The map qTr : V 7→ qTrV defines then a homomorphism of the Grothendieck ring of RepA

to the ring of q-characters.

B.2. The SL(2,Z)-action on Z of (Q,Φ). For our quasi-Hopf algebra (Q,Φ), with the
M -matrix in (91), the normalised right integral µ and the left-right cointegral c are

(115) µ(EmFnKl) =
β2

i
δm,1δn,1δl,3 , c =

β2

i
EF

3∑
j=0

Kj ,

where we assume our usual condition β4 = −1, so the coefficient in (115) is just a sign (which
is not fixed by (111) and the choice β2

i
is our convention).

Using (113), we compute the balancing element

(116) g = K±1 , for β2 = ∓i .

We now compute the image of the Grothendieck ring of RepQ in the centre Z using the
composition χ ◦ qTr, see (110) and (114):

(117) X±s 7→ χ±s ≡ χ
(
qTrX±s

)
=
∑
(M)

TrX±s (g−1M ′)M ′′ , s = 1, 2 ,

using the M -matrix in (91). For s = 1, the image does not depend on β:

(118) χ+
1 = 1 , χ−1 = −K2 ,

while for s = 2 the image depends on β2:

χ+
2 = 4C , χ−2 = −4CK2 , for β2 = i ,

χ+
2 = −4CK2 , χ−2 = 4C , for β2 = −i ,

(119)

where C is the Casimir element defined under (8). This result agrees with the one in [FGST1]
corresponding to β = eπi/4. Recall that the centre Z is 5-dimensional [FGST1] and is spanned
by the idempotents e0, e±1 defined in (6) and (78), and the two nilpotents w± defined just
before (90). Using the functionals qTrX±s , we have found the four basis elements as images
of χ, while to construct the fifth one could use the pseudo-trace from [GT, Sec. 3.2], a q-
character associated to the projective module P+

1 ⊕P−1 . The composition φ◦qTr is evaluated
as

(120) X±s 7→ φ±s ≡ φ
(
qTrX±s

)
=
∑
(c)

TrX±s (g−1c′)c′′ , s = 1, 2 ,

with the cointegral in (115). The images have the following dependence on β:

(121) φ±1 =
4β2

i
w± , φ±2 = ±4e±1 .

Now, we are ready to formulate the main result of this section.
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B.3. Proposition. The SL(2,Z)-action (108) on the centre Z of the quasi-Hopf algebra (Q,Φ)

has the decomposition

(122) Z|SL(2,Z) = C2 ⊕ C3 .

Introducing the basis C2 = 〈ρ,ϕϕϕ〉 for the first summand and C3 = 〈κκκ0,κκκ1,κκκ2〉 for the second,
the SL(2,Z) action is

S(ρ) = −iϕϕϕ , S(ϕϕϕ) = iρ ,(123)

T(ρ) = bρ , T(ϕϕϕ) = b(ϕϕϕ− iβ−2ρ) ,(124)

and

S(κκκ0) =
1

2
(κκκ0 − 2κκκ1 +κκκ2) , S(κκκ1) =

1

2
(κκκ2 −κκκ0) , S(κκκ2) =

1

2
(κκκ0 + 2κκκ1 +κκκ2) ,(125)

T(κκκ0) = −bβκκκ0 , T(κκκ1) = bκκκ1 , T(κκκ2) = bβκκκ2 ,(126)

with b as in (109). At β = e−iπ/4, this action is equivalent to the “standard” SL(2,Z)-
representation in [FGST1].

Proof. We set for the basis in the C3 component in (122)

(127) κκκ0 = χ−2 , κκκ1 = χ+
1 + χ−1 , κκκ2 = χ+

2

and for the C2 component:

(128) ρ =
1

2
(χ+

1 − χ−1 ), ϕϕϕ =
i

2
(φ+

1 − φ−1 ).

For the C3 component, it is then a simple check that the S-action is given by (125). The
first part of (123) is obvious while during the calculation of the second equality in (123),
it is important to note that S2 acts as the identity on the centre Z of Q, i.e., S2|Z = id 7.
The ribbon element decomposition (90) simplifies the calculation of the T action as well. In
addition to S2 = 1 one also easily checks the relation (ST)3 = 1.

The mapping

ρ 7→ ρ(1), ϕϕϕ 7→ ϕϕϕ(1), κκκs 7→ κκκ(s), s = 0, 1, 2,

between our basis and the one in [FGST1, Sec. 5] for p = 2 establishes the equivalence at
(the symplectic fermions value of) β = e−iπ/4. �

7For a factorisable Hopf algebra, S2 acts via the antipode [LM]. Since for Uqs`(2) the antipode acts as the
identity on the centre, so does S2. This general property was actually used in [FGST1] during the calculation
of S. In our context of quasi-Hopf algebras, we are not aware of this property in general and should thus
give a direct argument. We express ϕϕϕ = −iβ2χ(γ(1)), where γ(1) = TrP+

1 ⊕P−
1

(g−1− σ1) is the “pseudo-trace”
q-character from [GT] and σ1 : P+

1 ⊕ P−
1 → P+

1 ⊕ P−
1 is a linear map defined in [GT, eq. (3.10) with a0 = 1].

Then we compute φ(γ(1)) = β2e0 and therefore S(ϕϕϕ) = φ ◦ χ−1(ϕϕϕ) = −iβ2φ(γ(1)) = iρ. And so S2 acts on
Z by the identity for any value of β indeed.
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Looking at the eigenvalues of T in Proposition B.3 we see that different values of β2

give inequivalent representations of SL(2,Z). On the other hand, changing β to −β gives
an equivalent representation (via κκκ0 ↔ κκκ2 and κκκ1 → −κκκ1). We have thus obtained two
inequivalent SL(2,Z) actions on Z parametrised by β2.
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