Solutions d'acide chlorhydrique et de soude

I°) Étude des solutions diluées d'acide chlorhydrique

1°) Préparation

- a. Par dissolution du soluté : le chlorure d'hydrogène qui est sous forme gazeuse (HCL qui est un composé moléculaire
- b. Dilution de solutions commerciale (! Précaution à prendre)

2°) Étude qualitative

- Solution très conductrice
 - ⇒ Présence de beaucoup d'ions
- √ Test des ions chlorure (Cl⁻) avec du nitrate d'argent (I) qui donne un précipité blanc qui noircit à la lumière

$$H_3O^+: pH < 7 \Rightarrow [H_3O^+] > [HO^-]$$

3°) Équation-bilan de la dissolution du soluté

$$HCl + H_2O \longrightarrow H_3O^+ + Cl^-$$

Est-ce que cette solution est totale?

Étude quantitative d'une solution :

$$\begin{aligned} \text{Solution}: & C = 1,0.10^{-2} \text{ mol.L}^{-1} \\ & pH = 2,0 \\ [H_3O^+] = 10^{-pH} = 10^{-2,0} = 1,0.10^{-2} \text{ mol.L}^{-1} \\ [H_3O^+] = C \end{aligned}$$

⇒ La réaction est totale

4°) Espèce présentes dans une solution d'acide chlorhydrique

 H_2O

H₃O⁺ et Cl⁻ : espèces majoritaires

HO⁻: ultra minoritaire donc négligeable)

5°) Calcul du pH en fonction de la concentration du soluté

$$pH = -\log [H_3O^+]$$

Si les solutions ne sont pas trop diluées, on peut négliger les ions H_3O^+ provenant de l'autoprotolyse de l'eau et écrire d'après l'équation—bilan :

$$[H_3O^+] = C \Leftrightarrow pH = -\log C$$

(valable si $10^{-5} < C < 10^{-1} \text{ (mol.L}^{-1}\text{)}$)

II°) Solution diluée d'Hydroxyde de sodium (ou soude)

1°) Préparation

- a. Par dissolution du soluté : solide ionique NaOH (Na⁺ + OH⁻), très soluble dans l'eau (! corrosif)
- b. Dilution de solution concentrée

2°) Étude des solutions

$C (mol.L^{-1})$	1,0.10 ⁻²	1,0.10 ⁻³	1,0.10 ⁻⁴
pН	12,0	11,0	10,0

$$pH = 12,0 \Leftrightarrow [H_3O^+] = 10^{-pH} = 10^{-12,0} = 1,0.10^{-12,0} \text{ mol.L-1}$$
$$[HO^{-1}] = \frac{Ke}{[H_3O^{+1}]} = \frac{1,0.10^{-14,0}}{1,0.10^{-12,0}} = 1,0.10^{-2,0} \text{ mol.L}^{-1}$$
$$[HO^-] = C$$

⇒ Équation–Bilan de la dissolution :

NaOH
$$\stackrel{\text{Eau}}{\longrightarrow}$$
 Na⁺ + OH⁻

⇒ La réaction est totale

3°) Conséquences

x Espèces présentes dans une solution d'hydroxyde de sodium :

 H_2O

Na⁺ et HO⁻ majoritaires

H₃O⁺ (ultra minoritaire donc négligeable)

x Calcul du pH à partir de la concentration C connue :

domaine : $10^{-5} < C < 10^{-1} \text{ (mol.L}^{-1)}$

pH =
$$-\log [H_3O^+]$$
 or $[H_3O^{+1}] = \frac{Ke}{[HO^{-1}]}$

d'après l'équation de dissolution de NaOH dans l'eau, et en négligeant l'autoprotolyse de l'eau, on peut dire que :

$$[HO^{-}] = C$$

donc: $pH = \frac{Ke}{C} \Leftrightarrow pH = -\log Ke + \log C \Leftrightarrow pH = pKe + \log C$ ce qui équivaut à : 14,0 + log C (si l'on se trouve à 25°C)

III°) Généralisation : acides et bases forts

1°) Les acides forts

a) Définition (provisoire d'Arrhénius)

Un acide est un corps qui réagit avec l'eau en libérant des ions hydronium. Un acide est dit fort si sa réaction avec l'eau est **totale**.

b) Exemples

 $HCl: Chlorure d'hydrogène \rightarrow acide chlorhydrique \\ HCl + H_2O \longrightarrow H_3O^+ + Cl^- \\ HNO_3: acide nitrique \\ HNO_3 + H_2O \longrightarrow H_3O^+ + NO_3^- \\ En général: \\ HA + H_2O \longrightarrow H_3O^+ + A^- \\$

2°) Les bases fortes

a) Définition (provisoire)

Une base est un corps qui va réagir sur l'eau en libérant des ions hydroxyde Une base est dite forte si sa réaction avec l'eau est **totale**.

b) Exemples

NaOH: hydroxyde de sodium

KOH: hydroxyde de potassium (potasse)

(Ce sont des corps ioniques qui possèdent déjà l'ion HO⁻)

En général : BOH B++OH-